Register Number:
Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 B.Sc. MATHEMATICS - II SEMESTER

EXAMINATION - APRIL 2018
MT 215: MATHEMATICS - II
Time:2 1/2 hrs
Maximum marks: 70

This question paper has 2 printed pages and 5 parts

I. ANSWER ANY FIVE QUESTIONS.

1. In the group of set of positive rationals $\mathrm{Q}^{+}, *$ is defined by a $* \mathrm{~b}=\frac{a b}{5}$, find inverse of 4 .
2. Define a semi-group with an example.
3. Show that for the curve $r=a e^{\theta \cot \alpha}$, where α is a constant, the tangent is inclined at a constant angle to the radius vector.
4. What is the length of the perpendicular from the pole to the tangent at $\mathrm{P}(\mathrm{r}, \theta)$ to the curve $\mathrm{r}=f(\theta)$
5. Find the asymptotes of the curve $r \theta=a$
6. Write the formula to find the radius of curvature when the curve is
i) $y=f(x)$
ii) $\mathrm{r}=f(\theta)$
7. Solve $\left(x^{2}-a y\right) d x+\left(y^{2}-a x\right) d y=0$
8. Reduce the given equation $\left(x^{2}-1\right) p^{2}-2 x y p+y^{2}-1=0$ to the form $y=p x+f(p)$ and hence find its general solution.
9. Prove that $G=\left\{3^{n}: n\right.$ is an integer $\}$ is an abelian group under multiplication.
10. In a group G,Prove that
a) The identity element of a group G is unique
b) The inverse of an element in G is unique
11. Prove that $\mathrm{G}=\{1,3,4,5,9\}$ is an abelian group under multiplication modulo 11.
12. Prove that a non empty subset H of a group ($\mathrm{G},{ }^{*}$) is a subgroup of G iff $\forall \mathrm{a}, \mathrm{b} \in \mathrm{H}$, $a * \mathrm{~b}^{-1} \in \mathrm{H}$.

III. ANSWER ANY THREE QUESTIONS

13. Show that the curves $r=\frac{a}{1+\cos \theta} \quad \& r=\frac{b}{1-\cos \theta}$ intersect orthogonally
14. Find the pedal equation of the curve $r^{m}=a^{m} \cos m \theta$.
15. Show that evolute of the parabola $y^{2}=4 a x$ is $4(x-2 a)^{3}=27 a y^{2}$
16. Find all the asymptotes of the curve $y^{3}+x^{2} y+2 x y^{2}-y+1=0$
17.Discuss the position and nature of the double points on the curve $x^{3}+x^{2}+y^{2}-x-4 y+3=0$.

IV. ANSWER ANY ONE QUESTION

18. Find the area bounded by the cissoid $y^{2}(a-x)=x^{3}$ and its asymptote
19. Find the Volume generated by revolving the curve Astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ about the x -axis
V. ANSWER ANY THREE QUESTIONS
20. Solve $\sin x \frac{d y}{d x}+y \cos x=x \sin x$
21. Solve $x \frac{d y}{d x}+y=y^{2} \log x$
22. Solve $\left(x^{2}-3 x y+2 y^{2}\right) d x+x(3 x-2 y) d y=0$
23. Find the orthogonal trajectories of the family of curves $x^{2}+3 y^{2}=c y$.
