

Date:

St. Joseph's College, Autonomous, Bangalore M.Sc Mathematics-II Semester End semester Examination: April,2018 MT8114: Algebra-II

Duration: 2.5 Hours

Max. Marks:70

- 1. The paper contains two printed pages.
- 2. Attempt any SEVEN FULL questions.
- 3. Each question carries 10 marks.
- $4. \ \mbox{In all questions } A$ is a commutative ring with unity.
- 1. (a) Let $f : A \to B$ be homomorphism of rings. Let J be an ideal of B.
 - (i) Prove that $f^{-1}(J)$ is an ideal of A.
 - (ii) If J is prime in B, then is $f^{-1}(J)$ prime in A? Justify your answer.
 - (iii) If J is maximal in B, then is $f^{-1}(J)$ maximal in A? Justify your answer

[4+2+1 marks]

[2 marks]

[10 marks]

(b) Let I be an ideal of a ring A. Define the radical of $I := r(I) = \{x \in A | x^n \in I \text{ for some } n \in \mathbb{N}\}$. Prove that r(I) is the intersection of all prime ideals of A containing I. [3 marks]

2. (a) State Nakayama's Lemma

- (b) Let Σ be a set partially ordered with respect to the relation " \leq ". Prove that the following are equivalent.
 - 1. Every increasing sequence $x_1 \leqslant x_2 \dots \leqslant x_n \dots$ in Σ is stationary.
 - 2. Every non-empty subset of Σ has a maximal element. [8 marks]
- 3. (a) Let M', M, M'', N be A-modules.

Given $u : M' \to M$, we define $\bar{u} : Hom_A(M, N) \to Hom_A(M', N)$ as follows: $\bar{u}(f) = f \circ u$ for all $f \in Hom_A(M, N)$. It can be easily verified that \bar{u} is an A-module homomorphism. Let

$$M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$$

be exact sequence of homomorphism of A-modules. Prove that the following sequence of A-module homomorphisms

 $0 \to Hom_A(M'',N) \xrightarrow{\tilde{\nu}} Hom_A(M,N) \xrightarrow{\tilde{u}} Hom_A(M',N)$

is also exact, where \bar{v} is defined similar to \bar{u} .

(b) State Snake's Lemma.

- 4. State and Prove Hilbert Basis Theorem [10 marks]
- 5. (a) Prove that in an Artinian ring every prime ideal is maximal. [8 marks]

- (b) Give an example of a ring which is neither Noetherian nor Artinian. [2 mark]
- 6. (a) Suppose that E is an extension of F of prime degree. Show that for $a \in E$ either F(a) = F or F(a) = E. [2 marks]
 - (b) Prove that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) = \mathbb{Q}(\sqrt[6]{2})$ [4 marks]
 - (c) Let K/F be an extension of fields. Prove that $\alpha \in K$ is algebraic over F if and only if $F(\alpha)/F$ is finite. [4 marks]
- 7. (a) Prove or Disprove: $\mathbb{Q}(\sqrt[4]{2})$ is Galois over \mathbb{Q} . [4 marks]
 - (b) Let $\alpha \in \mathbb{Q}$ is a root of a monic polynomial in $\mathbb{Z}[x]$. Prove that α is an integer. [3 marks]
 - (c) If ab is algebraic over $F(b \neq 0)$, prove that b is algebraic over F(a). [3 marks]
- 8. Let the extension K/F is Galois, then prove that K is the splitting field of some separable polynomial over F. [10 marks]
- For each part give an example of a field with stated property. If no such field exists, write "none". No justifications are required.
 [2 marks each]
 - (a) A field of characteristic 3 which is not finite.
 - (b) A finite field of characteristic 0.
 - (c) A field of degree 2 over \mathbb{Q} which is not Galois.
 - (d) A field of degree 3 over \mathbb{Q} which is not Galois.
 - (e) A Galois extension of \mathbb{F}_3 whose Galois group is not cyclic.
- 10. Find the splitting field E of $x^4 + 1$ over \mathbb{Q} . Find Gal(E/ \mathbb{Q}) and all the subgroups of it. Find the corresponding subfields of E. Is there an automorphism of E whose fixed field is \mathbb{Q} ? [10 marks]