St. Joseph's College, Autonomous, Bangalore
 M.Sc Mathematics-II Semester
 End semester Examination: April,2018
 MT8114: Algebra-II

Duration: 2.5 Hours
Max. Marks:70

1. The paper contains two printed pages.
2. Attempt any SEVEN FULL questions.
3. Each question carries 10 marks.

4. In all questions A is a commutative ring with unity.

1. (a) Let $f: A \rightarrow B$ be homomorphism of rings. Let J be an ideal of B.
(i) Prove that $f^{-1}(J)$ is an ideal of A.
(ii) If J is prime in B, then is $\mathrm{f}^{-1}(\mathrm{~J})$ prime in A ? Justify your answer.
(iii) If J is maximal in B, then is $\mathrm{f}^{-1}(\mathrm{~J})$ maximal in A ? Justify your answer
[4+2+1 marks]
(b) Let I be an ideal of a ring A. Define the radical of $I:=r(I)=\left\{x \in A \mid x^{n} \in I\right.$ for some $\left.n \in \mathbb{N}\right\}$. Prove that $r(I)$ is the intersection of all prime ideals of A containing I.
2. (a) State Nakayama's Lemma
(b) Let Σ be a set partially ordered with respect to the relation " $\leqslant "$. Prove that the following are equivalent.
3. Every increasing sequence $x_{1} \leqslant x_{2} \cdots \leqslant x_{n} \cdots$ in Σ is stationary.
4. Every non-empty subset of Σ has a maximal element.
5. (a) Let $M^{\prime}, M, M^{\prime \prime}, N$ be A-modules.

Given $u: M^{\prime} \rightarrow M$, we define $\bar{u}: \operatorname{Hom}_{A}(M, N) \rightarrow \operatorname{Hom}_{A}\left(M^{\prime}, N\right)$ as follows: $\bar{u}(f)=f \circ u$ for all $\mathrm{f} \in \operatorname{Hom}_{\mathrm{A}}(M, N)$. It can be easily verified that \bar{u} is an A-module homomorphism.
Let

$$
\mathrm{M}^{\prime} \xrightarrow{u} \mathrm{M} \xrightarrow{v} \mathrm{M}^{\prime \prime} \rightarrow 0
$$

be exact sequence of homomorphism of A-modules. Prove that the following sequence of A-module homomorphisms

$$
0 \rightarrow \operatorname{Hom}_{\mathrm{A}}\left(\mathrm{M}^{\prime \prime}, \mathrm{N}\right) \xrightarrow{\bar{v}} \operatorname{Hom}_{\mathrm{A}}(\mathrm{M}, \mathrm{~N}) \xrightarrow{\bar{u}} \operatorname{Hom}_{\mathrm{A}}\left(\mathrm{M}^{\prime}, N\right)
$$

is also exact, where \bar{v} is defined similar to \bar{u}.
(b) State Snake's Lemma.
4. State and Prove Hilbert Basis Theorem
5. (a) Prove that in an Artinian ring every prime ideal is maximal.
(b) Give an example of a ring which is neither Noetherian nor Artinian.
6. (a) Suppose that E is an extension of F of prime degree. Show that for $a \in E$ either $F(a)=F$ or $F(a)=E$. [2 marks]
(b) Prove that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})=\mathbb{Q}(\sqrt[6]{2})$
(c) Let K / F be an extension of fields. Prove that $\alpha \in K$ is algebraic over F if and only if $F(\alpha) / F$ is finite. [4 marks]
7. (a) Prove or Disprove: $\mathbb{Q}(\sqrt[4]{2})$ is Galois over \mathbb{Q}.
(b) Let $\alpha \in \mathbb{Q}$ is a root of a monic polynomial in $\mathbb{Z}[x]$. Prove that α is an integer.
(c) If $a b$ is algebraic over $F(b \neq 0)$, prove that b is algebraic over $F(a)$.
8. Let the extension K / F is Galois, then prove that K is the splitting field of some separable polynomial over F. [10 marks]
9. For each part give an example of a field with stated property. If no such field exists, write "none". No justifications are required.
[2 marks each]
(a) A field of characteristic 3 which is not finite.
(b) A finite field of characteristic 0 .
(c) A field of degree 2 over \mathbb{Q} which is not Galois.
(d) A field of degree 3 over \mathbb{Q} which is not Galois.
(e) A Galois extension of \mathbb{F}_{3} whose Galois group is not cyclic.
10. Find the splitting field E of $x^{4}+1$ over \mathbb{Q}. Find $\operatorname{Gal}(E / \mathbb{Q})$ and all the subgroups of it. Find the corresponding subfields of E. Is there an automorphism of E whose fixed field is \mathbb{Q} ?
[10 marks]

