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Answer any SEVEN questions from the following. 
 

1. a) If ‘ f ’ is analytic over a simply connected domain D  and C  is a simple closed                

    curve that lies inside D, then Show that ,
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     where (n=1,2,3……..)        

b) Evaluate ,
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     where   3: zc   .                                     (5+5) 

2. State and Prove Cauchy’s Theorem for a rectangle.                                             (10) 

3. a) Show that  “Suppose )(zf  is analytic at 0z then )(zf  has a zero of order ‘ m ’  

         at 0z  iff )(zf  can be written in the form ),()()( 0 zgzzzf m  where )(zg   

   is analytic at 0z  and )( 0zg .0 ”                                         

b) Show that “A complex function )(zf  has a pole of order ‘ m ’  

    at 0z iff )(zf  can be written in the form 
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 where 

 )(z  is analytic in the  neighbourhood  of 0z  and .0)( 0 z ”                          (5+5) 

        
4. a) State and Prove Taylor’s Theorem. 

b) Expand 
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zf  in a laurentz series valid for  

 

    (i) 3z       (ii) 32  z                                                                                (5+5)      

 
 



 
 

5. Let ''R  be the Radius of convergence of the Power series  
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n za ,  then Prove the following: 

   (i) The derived power series 
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       the original power series 
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  (ii) The sum function )(zf  is analytic for .Rz   

  (iii) The sum function )(zf  is infinitely differentiable over .Rz                   (10) 

6. a)  Define Removable singularity and Pole, give examples for each. 
b)  Define Residue and discuss the Residue of the following function at each of the  

     pole, 
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c)  Derive the formula to find the Residue at the pole of order .m                      (3+5+2) 

7. Evaluate .10,
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                                                                             (10) 

8. State and Prove Hadamard’s three circle Theorem.                                           (10) 
9. a)  State and Prove Maximum modulus Theorem. 

b)  State and Prove Weierstrass factorization Theorem.                                    (7+3) 
10. State and Prove Poisson’s integral Formula.                                                      (10) 

 
 

 

 

 

 


