Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 M.Sc. MATHEMATICS - II SEMESTER SEMESTER EXAMINATION: APRIL 2018
 MT 8214: COMPLEX ANALYSIS

Time- $2 \mathbf{1 / 2}$ hrs

Max Marks-70

This paper contains TWO printed pages

Answer any SEVEN questions from the following.

1. a) If ' f ' is analytic over a simply connected domain D and C is a simple closed curve that lies inside D , then Show that $f^{(n)}(a)=\frac{n!}{2 \pi i} \oint \frac{f(z)}{c} d z$, where ($n=1,2,3 \ldots \ldots .$.)
b) Evaluate $\oint_{c} \frac{3 z^{2}+4 z-1}{\left(z^{2}+4\right)\left(z^{2}+1\right)} d z, \quad$ where $c:|z|=3$.
2. State and Prove Cauchy's Theorem for a rectangle.
3. a) Show that "Suppose $f(z)$ is analytic at z_{0} then $f(z)$ has a zero of order ' m ' at z_{0} iff $f(z)$ can be written in the form $f(z)=\left(z-z_{0}\right)^{m} g(z)$, where $g(z)$ is analytic at z_{0} and $g\left(z_{0}\right) \neq 0$."
b) Show that "A complex function $f(z)$ has a pole of order ' m ' at z_{0} iff $f(z)$ can be written in the form $f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}}$ where $\phi(z)$ is analytic in the neighbourhood of z_{0} and $\phi\left(z_{0}\right) \neq 0$."
4. a) State and Prove Taylor's Theorem.
b) Expand $f(z)=\frac{z+1}{(z+2)(z+3)}$ in a laurentz series valid for

$$
\begin{array}{ll}
\text { (i) }|z|>3 & \text { (ii) } 2<|z|<3 \tag{5+5}
\end{array}
$$

5. Let ' R ' be the Radius of convergence of the Power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, then Prove the following:
(i) The derived power series $\sum_{n=0}^{\infty} a_{n} z^{n-1}$ has the same Radius of convergence as the original power series $\sum_{n=0}^{\infty} a_{n} z^{n}$.
(ii) The sum function $f(z)$ is analytic for $|z|<R$.
(iii) The sum function $f(z)$ is infinitely differentiable over $|z|<R$.
6. a) Define Removable singularity and Pole, give examples for each.
b) Define Residue and discuss the Residue of the following function at each of the pole, $f(z)=\frac{e^{z}}{z^{2}(z-5)^{3}}$.
c) Derive the formula to find the Residue at the pole of order m.
7. Evaluate $\int_{-\infty}^{\infty} \frac{e^{a x}}{e^{x}+1}, 0<a<1$.
8. State and Prove Hadamard's three circle Theorem.
9. a) State and Prove Maximum modulus Theorem.
b) State and Prove Weierstrass factorization Theorem.
10. State and Prove Poisson's integral Formula.
