

topological.

Register Number:

[10]

DATE:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 M.Sc. MATHEMATICS– II SEMESTER SEMESTER EXAMINATION: APRIL 2018 <u>MT 8515 – TOPOLOGY - II</u>

Time-	- 2 ¹ / ₂ hrs Ma	x Marks-70
	This paper contains <u>Two</u> printed pages	
Answer any SEVEN of the following questions.		(7 x10=70)
1.	a) If every countable open cover of (X, τ) has a finite subcover then prove t	hat
	(X, τ) is Limit point compact.	
	b) Prove that every closed subspace of a compact space is compact.	[6+4]
2.	a) Prove that every compact space is limit point compact.	
	b) State and prove Extreme Value theorem.	[5+5]
3.	a) State the Countability axioms. Prove that every second axiom space is a fraction space.	rst
	b) Define Lindelof space. Prove that every second axiom space is a Lindelof	space. [5+5]
4.	a) Prove that the topologies induced by the Euclidean metric d and square m	etric ρ
	are the same as the product topology on R^n .	
	b) Prove that a Hausdorff space is product invariant.	[5+5]
5.	a) Define $T_0 - space$. Prove that a space (X, τ) is a $T_0 - space$ if and only	if closure
	of distinct points in (X, τ) are distinct.	
	b) Prove that a space (X, τ) is a T_1 – <i>space</i> if and only if all singleton sets in	n (X, τ)
	are closed.	[6+4]
6.	Define $T_3 - space$. Prove that a metric space is a $T_3 - space$. Prove that T_3	- <i>space</i> is

7. a) Define Normal space. Prove that a space (X, τ) is normal if and only if given any open set G and a closed set $F \subseteq G$ there exist an open set G^* such that $F \subseteq G^* \subseteq \overline{G}^* \subseteq G$.

b) Prove that a closed subspace of a normal space is normal. [7+3]

- Define a Completely normal space. Prove that a space is completely normal if and only if every subspace is normal. [10]
- 9. Prove that a space (X, τ) is normal if and only if given any two disjoint closed sets
 F₁ and F₂ on X and the interval [0, 1] there exist a continuous function f : X → [0,1] such that f(F₁) = {0} and f(F₂) = {1}. [10]
- 10. State and prove Urysohn Metrization theorem.

[10]