Register Number:
 Date:

ST.JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 M.Sc. PHYSICS - II SEMESTER
 SEMESTER EXAMINATION: APRIL 2018.
 PH 8215: NUMERICAL TECHNIQUES

Time: $\mathbf{2 . 5}$ hours
Max Marks: 70
This paper contains 3 printed pages

PART - A

Answer any 7 questions. Each question carries 10 marks. $\quad(7 x 10=70)$

1. (a) State the two differences between direct and iterative methods for solving the system of linear equations.
(b) Using the power method determine the largest eigenvalue and the
corresponding eigenvector of the matrix $\left(\begin{array}{ccc}1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$
2. (a) State and prove Lagrange's interpolation formula.
(b) Use Lagrange's interpolation formula to fit a polynomial to the data

x	0	1	3	4
$\mathrm{f}(\mathrm{x})$	-12	0	6	12

Find the value of y when $x=2$
3. (a) Explain the order of truncation error in the trapezoidal formula.
(b) Compare Trapezoidal rule and Simpson's $1 / 3$ rule for evaluating numerical integration.
4. (a) Write the merits and demerits of the Taylor series method of ordinary differential equations.
(b) Solve the following initial value problem involving two independent functions $x(t)$ and $y(t)$ using Taylor series method.

$$
\frac{d x}{d t}=t y+1: \frac{d y}{d t}=-t x, t=0, x=0, y=1 . \text { Evaluate } x \text { and } y \text { at } t=0.1,0.2 .
$$

5. (a) Derive the formula for least square method of linear regression analysis? (5+5)
(b) The sales of a company (in million dollars) for each year are shown in the table below.

x (year)	2005	2006	2007	2008	2009
y (sales)	12	19	29	37	45

i) Find the least square regression line $y=a x+b$.
ii) Use the least squares regression line as a model to estimate the sales of the company in 2012.

6 . Using Euler's method (a) solve $\frac{d y}{d x}=1+x y$ with $y(0)=2$. Find $y(0.1), y(0.2)$, and $y(0.3)$ also find the values by modified Euler's method.
7. (a) Write the Runge-Kutta algorithm of second order for solving $(3+2+5)$

$$
y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0} .
$$

(b) What are the distinguishing properties of Runge-Kutta methods?
(c) Solve using fourth order Runge-Kutta method.

$$
\frac{d y}{d x}+\frac{y}{x}=\frac{1}{x^{2}} ; y(1)=1
$$

8. (a) Explain Poisson distribution is a properly normalized probability distribution ?
(b) Explain how to find the mean value when the distribution is binomial.
9. (a) Define: Fourier integral theorem.
(b) What are conditions should be satisfied for Fourier integral theorem
(c) Prove that the Fourier Transform of the product of two functions is $\frac{1}{\sqrt{2 \pi}}$ times the Convolution of their Fourier Transforms.
10. (a) State and prove Central Limit Theorem.
(b) What is Maximum Likelihood Method?
