

Register Number:

DATE: 17-11-2020

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

M.Sc. PHYSICS - III SEMESTER

SEMESTER EXAMINATION- NOVEMBER 2020

PH 9118 - QUANTUM MECHANICS II

Time-2 1/2 hrs.

Maximum Marks-70

This question paper has 4 printed pages and 2 parts and includes a table of constants and integrals

PART A

Answer any **FIVE** full questions.

(5x10=50)

- 1. Spin 1/2 particles can be represented by two states: the up state $|1/2,+1/2\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, and the down state $|1/2,-1/2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ where the notation on the left hand side is the ket that is labelled in the form of $|s,m\rangle$; s is the spin quantum number and m the magnetic quantum number (since the operators $\hat{S^2}$ and $\hat{S_z}$ form a complete set of commuting observables). We also use the vector notation of $\chi_+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\chi_- = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ which form an orthonormal basis in the spin-1/2 space. Using the eigenvalue equations for the operators S^2 and $\hat{S_z}$: and obtain the matrix form for the operators $\hat{S^2}$ and $\hat{S_z}$. 2. The ground state wave function for the hydrogen atom is given as

 $\psi_{100}(r,\theta,\phi)=R_{10}(r)Y_0^0(\theta,\phi)$. The radial solution is: $R_{10}(r)=\frac{a_0}{c}e^{-r/a}$ and the angular component is: $Y_0^0(\theta,\phi) = \frac{1}{\sqrt{4\pi}}$. Normalize ψ_{100} (remember: it's spherical polar coordinates).

3. (a) Starting with the time dependent Schrodinger equation, express the evolution equation of the components of the basis vectors (i.e. derive the equation:

$$i\hbar \frac{dc_k}{dt} = E_k c_k(t) + \sum_n \lambda c_n(t) \langle \phi_k | \hat{W} | \phi_n \rangle$$
.

From this equation show that $c_k(t) = b_k e^{-iE_k t/\hbar}$. Express the time dependent perturbation equation in terms of b_n

- (b) For a system subject to a time dependent perturbation, write down an expression for transition probability from an initial state $\ket{\phi_i}$, to a final state $\ket{\phi_f}$.
- 4. A particle in an infinite potential, containing three levels with n=1 , n=2 and n=3 is $W = 10^{-3} V_0 \frac{x^2}{r^2}$ where subjected to a time independent perturbation due to a potential:

x is the position of the particle and $\ L$ is the length of the box and $\ V_{\scriptscriptstyle 0}$ is a constant with dimensions of energy. Estimate the first order change to all the 3 energy levels.

6.

- (a) In the region where the WKB approximation fails, express the potential as a linear function of the form $V(x) \approx E + V'(0)x$. Substitute in Schrodinger equation to obtain the Airy Equation.
- (b) Write down the general form for the wave function in the overlap region of the classical and non-classical region. (5+5)
- (a) What are the possible states for a system composed of two spin half particles? Construct permutation operators for these.
 - (b) Based on the states derived above, construct completely symmetric and completely antisymmetric states. Use the permutation operators constructed in section (a) to show the symmetry operations. (5+5)
- 7. For a particle in a box potential defined between $0 \le x \le L$, use the Variational Method to
 - (a) obtain the ground state energy
 - (b) compute the percentage difference in the ground state energy You may use the trial wavefuction: $\psi_{\text{trial}}(x) = A x^2 (x - L)^2$ (8+2)

PART B

Answer any FOUR full questions.

(4x5=20)

- 8. For a system consisting of a particle with $j_1 \! = \! 1$ and another with $j_2 \! = \! 2$, what are **all** the possible states of the composite system and how will they be related to the individual states of each of the particles? You do not have to calculate the Clebsch-Gordan coefficients and also, you do not need to ortho-normalize the states.
- 9. Consider a quantum system with just three linearly independent states. The Hamiltonian, in

matrix form, is:
$$H=V_0\begin{pmatrix} (1-\epsilon) & 0 & 0 \\ 0 & 1 & \epsilon \\ 0 & \epsilon & 2 \end{pmatrix}$$
 where V_0 is a constant and ϵ is some

small number ($\epsilon \ll 1$)

- (a) Write down the eigenvectors and eigenvalues of the unperturbed Hamiltonian ($\, \varepsilon {=} 0 \,$). Identify the degenerate and the nondegenerate eigenstates
- (b) Solve for the exact eigenvalues of H.
- (c) Use first order non-degenerate perturbation theory to find the approximate eigenvalue

for the state that evolves out of the nondegenerate eigenvector of $\ H_0$

10.Permutation of three particles $(a,b,c) \rightarrow (b,c,a)$ maybe represented by the matrix operation

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} b \\ c \\ a \end{pmatrix} .$$

(a) In a similar manner write down a 4x4 matrix representation for a permutation of four objects $(a,b,c,d) \rightarrow (d,a,c,b)$

(b) Write down the matrices $oldsymbol{A}$ and $oldsymbol{B}$ for two consecutive $(a,b,c,d) \rightarrow (a,b,d,c) \rightarrow (d,a,c,b)$. permutations

(c) Do the two matrices in (b) above commute (i.e. is AB=BA)?

11. Obtain the first order change to the ground state level eigenfunction for Question 4 in Part A. 12. When a system in eigenstates $|\phi_i
angle$ are subjected to a time-dependent perturbation, the components of eigenstates evolve with time through the integral (where the system is assumed to attain an eigen state $|\phi_k\rangle$ in time t):

 $b_k^{(1)}(t) = \frac{\lambda}{i \, \hbar} \int_0^t e^{i \omega_{kl} t'} \langle \phi_k | \hat{W} | \phi_i \rangle dt'$. If the final states are continuum states with density

ho(eta,E) , obtain the expression for transition probability (Fermi Golden Rule).

13. For a Hydrogen atom placed in a constant electric field $\,\epsilon\,\,$, obtain an expression for the perturbed Hamiltonian. Using this, derive the first order perturbation to the ground state Energy. The wavefunction for the ground state of Hydrogen atom is:

$$\psi_{100}(r,\theta,\phi) = \frac{1}{\sqrt{\pi a^3}} e^{-r/a}$$

(Some) Physical Constants

[Constants: $h=6.626070 \times 10^{-34}$ J s (Planck's constant), $1 eV = 1.6 \times 10^{-19}$ J (electron volt to Joules), c=2.99792458x10⁸ m/s (speed of light), $1\dot{A} = 1x10^{-10}$ m (Angstrom to meters), $e = 1.602176x10^{-19}$ C (electronic charge), ϵ_0 = 8.85418782x10⁻¹²m⁻³kg⁻¹s⁴A² (permittivity of free space), m_{proten} =1.672621898x10⁻²⁷kg (mass of proton), m_{electron}=9.10938356x10⁻³¹kg (mass of electron), m_{neutron}=1.674927471x10⁻²⁷kg (mass of neutron), a = 5.029x10⁻¹⁰m (Bohr radius), $\alpha = 1/137$ (Fine Structure Constant), $G=6.674x10^{-11}m^3kg^{-1}s^{-2}$ (Gravitational constant), $M_{\odot} = 1.9891 \times 10^{30} \text{ kg (Solar mass)}$, $R_{\odot} = 6.9 \times 10^{8} \text{ m (Sun's Radius)}$, $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ (Stefan-Boltzmann constant), M_{Earth}=5.97x10²⁷kg (Mass of Earth), D_{earth-sun}=1.49x10¹¹m (Earth-Sun distance), 1 inch

(a) Table of (some) Integrals

*/ 1.110
Gamma Function:
$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$
$\Gamma(n)=(n-1)!$
$\Gamma(\frac{1}{2}+n) = \frac{(2n)!}{4^n n!} \sqrt{\pi}$

(a)
$$\int_0^\infty e^{-2bt} dt = \frac{1}{2b}$$

(b)
$$\int_0^\infty t \, e^{-2bt} dt = \frac{1}{4b^2}$$

(c)
$$\int_0^\infty t^2 e^{-2bt} dt = \frac{1}{4b^3}$$

(d)
$$\int_0^\infty t^3 e^{-2bt} dt = \frac{3}{8b^4}$$

(e)
$$\int_0^\infty t^4 e^{-2bt} dt = \frac{3}{4b^5}$$

(f)
$$\int_0^\infty t^5 e^{-2bt} dt = \frac{15}{8b^6}$$

(g)
$$\int_0^\infty t^6 e^{-2bt} dt = \frac{45}{8b^7}$$

(h)
$$\int \frac{1}{t^2+b^2} dt = \frac{1}{b} \tan^{-1} \left(\frac{t}{b} \right)$$

(k)
$$\int \frac{t^2}{(t^2+b^2)^2} dt = \left(-\frac{t}{(2b^2+2t^2)} + \frac{1}{2b} \tan^{-1} \left(\frac{t}{b} \right) \right)$$

(I)
$$\int \frac{1}{(t^2 + b^2)^3} dt = \frac{3}{8b^5} \left(\frac{5/3b^3t + bt^3}{(b^2 + t^2)^2} + \tan^{-1} \left(\frac{t}{b} \right) \right)$$

(m)
$$\int \frac{t^2}{(t^2+b^2)^4} dt = \frac{1}{16b^5} \left(\frac{bt^5 + 8/3b^3t^3 - 3b^5t}{(b^2 + t^2)^3} + \tan^{-1} \left(\frac{t}{b} \right) \right)$$

(n)
$$\int \sqrt{a/x-1} \, dx = x\sqrt{a/x-1} + a \tan^{-1}(\sqrt{a/x-1})$$

(o)
$$\int \sqrt{1-ax} \, dx = -\frac{2(1-ax)^{3/2}}{3a}$$

(p)
$$\int \sqrt{1-ax^2} dx = \frac{1}{2} x \sqrt{1-ax^2} + \frac{\sin^{-1} \sqrt{a} x}{2\sqrt{a}}$$

(q)
$$\int_{-\infty}^{\infty} e^{-\alpha t^2 + i\omega t} dt = \sqrt{\frac{\pi}{\alpha}} e^{-\frac{\omega^2}{4\alpha}}$$

$$(r) \qquad \int_0^\infty t^4 e^{-\alpha^2 t^2} dt = \frac{3\sqrt{\pi}}{8\alpha^5}$$

(i)
$$\int \frac{1}{(t^2+b^2)^2} dt = \frac{1}{2b^3} \left(\frac{bt}{(b^2+t^2)} + \tan^{-1} \left(\frac{t}{b} \right) \right)$$
 (s) $\int_0^\infty t^n e^{-st} dt = \frac{n!}{s^{n+1}}$ (Laplace Transform)

(s)
$$\int_0^\infty t^n e^{-st} dt = \frac{n!}{s^{n+1}}$$

(j)
$$\int \frac{1}{(t^2 + b^2)^4} dt = \frac{1}{16b^7} \left(\frac{15t^5b + 40b^35^3 + 33b^5t}{(3t^6 + 9bt^4 + 9b^3t^2 + b^5)} + 5\tan^{-1} \left(\frac{t}{b} \right) \right)$$