Register Number: Date: 19-11-2020

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 M.Sc. Physics - III SEMESTER SEMESTER EXAMINATION: NOVEMBER 2020 PH9218 - SOLID STATE PHYSICS

Time- 2 1/2 hrs

Max Marks-70

This paper contains TWO printed pages and TWO sections and includes physical constants.

Section - A

Answer any FIVE from the following questions. Each question carries 10 Marks.

 $(5 \times 10 = 50)$

- 1. Derive an expression for the specific heat of a solid based on the Einstein's model and show that at low temperature it drops exponentially with decreasing temperature.
- 2. Discuss the Kronig Penney model for the motion of an electron in periodic potential with suitable diagrams. Apply the following conditions (i). $P \rightarrow 0 \& (ii). P \rightarrow \infty$. [8+2]
- 3. (a). Explain the polarization in the ferroelectric material by applying external field.
 - (b). With a neat sketch, describe how the crystal structure and orientation of BaTiO₃ will change for the given temperatures:
 - (i). T > 120°C, (ii). 5°C < T < 120°C, (iii). -90°C < T < 5°C, (iv). T < -90°C.

[3+7]

- 4. Based on single particle tunneling, explain the D.C and A.C Josephson effects.
- 5. Describe quantum theory for paramagnetic substance and obtain the paramagnetic susceptibility relation for free electron.
- 6. a). Show that the reciprocal lattice of body centered cubic is the primitive of face
 - b). With a neat sketch, describe the Schottky and Frenkel defects.

[5+5]

- 7. a). With a neat sketch, explain the following condition through Fermi Dirac distribution
 - (i). T>0K (E= E_F), (ii). T=0K (E> E_F), (iii). T=0K (E< E_F).
 - b). Define density of states (DOS). Draw and show the variation of density of states with energy in three dimensions, two dimensions, one dimension and zero dimension. [5+5]

Section B

Answer any FOUR from the following questions. Each question carries 5 Marks.

 $[4 \times 5 = 20]$

- 8. a).A plane cuts x -axis at 3a, the y-axis at 2b and z axis at 4c. Calculate the Miller
 - b). Determine the angle between (110) and (011) plane in a cubic crystal.

[3+2]

- 9. In aluminum, velocity of longitudinal mode ($v_l = 6.32 \times 10^3 \frac{m}{s}$) and transverse mode $(v_t = 3.1~x\frac{10^3m}{s})$, the density of aluminum is 2.7 x 10³ kg/m³ and its atomic weight is 26.97. Calculate Debye cut off frequency (ϑ_D) for the aluminum.
- 10. The London penetration depth of Aluminum (AI) at 3 K and 7.1 K are 39 nm and 179 nm respectively. Calculate the superconducting transition temperatures as well as its penetration depth at 0K.
- 11. Describe ionic polarizations and obtain the expression for ionic polarizability.
- 12. In a magnetic material the field strength is found to be 10⁶ ampere/m. If the magnetic susceptibility of material is 0.5×10^{-5} , calculate the intensity of magnetization and flux density in the material.
- 13. a). Find out the molecule having C_3 axis of symmetry for the given compounds and Justify your answer.
 - i). BH₂CI ii). CH₃CI iii). NH2CI iv). HOCI
 - b). An element has a face centered cubic (FCC) structure with a cell edge of 'a'. Calculate the distance between the centers of two nearest tetrahedral voids in the lattice.

[3+2]

[Charge of electron (e): 1.6021×10^{-19} C, rest mass of electron (m_e): 9.109×10^{-31} kg, electron volts (eV): 1.602×10^{-19} J, Avogadro's number (N_A): 6.02552×10^{26} kmol⁻¹, Boltzmann constant (k_B): 1.38054×10^{-23} JK⁻¹, thermal energy at 300K (k_BT): 0.0258 J, Planks' Constant (h): 6.626×10^{-34} Js, permeability of free space (μ_0): $4\pi \times 10^{-7}$ H/m, permittivity of free space (ϵ_0): 8.854×10^{-12} F/m, 1 Angstrom unit (Å): 10⁻¹⁰ m.]

PH 9218-A-20