Register Number:

Date:

St. Joseph's College, Autonomous, Bangalore
 M.Sc Mathematics-II Semester

End semester Examination: April,2018
MT8114: Algebra-II
Duration: 2.5 Hours
Max. Marks:70

1. The paper contains two printed pages.
2. Attempt any SEVEN FULL questions.
3. Each question carries 10 marks.
4. In all the questions A is a commutative ring with unity.
5. (a) If I is an ideal of A, the radical of I is defined to be $r(I)=\left\{x \in A \mid x^{n} \in I\right.$ for some $\left.n \in \mathbb{N}\right\}$. Prove that $\mathbf{r}\left(\mathbf{p}^{n}\right)=\mathbf{p}$ for all $\mathbf{n}>0$, where \mathbf{p} is a prime ideal of A.
(b) Prove that M is a finitely generated A-module if and only if M is the quotient of A^{n} for some $n>0$ [8 marks]
6. (a) An element m of the A-module M is called torsion element if there exists a non-zero $a \in A$ such that $\mathrm{am}=0$. The set of all torsion elements is denoted by

$$
\operatorname{Tor}(M)=\{m \in M: a m=0 \text { for some non-zero } a \in A\}
$$

Prove that $\operatorname{Tor}(M)$ is a submodule of M if A is an integral domain.
[4 marks]
(b) Let A be a ring and \mathfrak{R} be its nilradical. Show that the following are equivalent.

1. A has exactly one prime ideal.
2. Every element of \mathcal{A} is either an unit or a nilpotent.
3. A / \Re is a field.
4. (a) Let M be an A-module. Prove that M is a Noetherian A-module if and only if every submodule of M is finitely generated.
[8 marks]
(b) State Snake's Lemma.
[2 marks]
5. (a) Let $I_{1}, I_{2}, \cdots, I_{n}$ be ideals of A and let \mathfrak{p} be another prime ideal A such that $\cap_{i=1}^{n} I_{i} \subseteq \mathfrak{p}$. Then prove that $I_{i} \subseteq \mathfrak{p}$ for some i. Provide example of three ideals I_{1}, I_{2} and J such that $I_{1} \cap I_{2} \subseteq J$ but neither $\mathrm{I}_{1} \subseteq \mathrm{~J}$ nor $\mathrm{I}_{2} \subseteq \mathrm{~J}$.
[5 marks]
(b) Prove that an Artinian ring has only a finite number of maximal ideals.
[5 marks]
6. (a) Let $\mathrm{K}: \mathrm{F}$ be a field extension. An element $\alpha \in \mathrm{K}$ is algebraic over F if and only if the simple extension $F(\alpha) / F$ is finite. Deduce that K / F is finite implies K / F is algebraic. Is the converse "Every algebraic extension is finite" true?
[5 marks]
(b) Use only straightedge and compass to draw a line segment one-third unit. Please write down the steps you used to draw it.
7. (a) Prove that if K is algebraic over F and L is algebraic over K, then L is algebraic over F. [5 marks]
(b) Give an example of a ring which is Noetherian but not Artinian. Justify your answer. [3 marks]
(c) Suppose that E is an extension of F of prime degree. Show that for $a \in E$ either $F(a)=F$ or $F(a)=E$.
8. (a) Prove that for any field F, if $f(x) \in F[x]$ then there exists an extension K of F which is a splitting field for $f(x)$.
[6 marks]
(b) Find the minimal polynomial for $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}. [4 marks]
9. (a) Prove that the characteristic of a field is 0 or a prime number.
[2 marks]
(b) Define prime subfield of a field.
[1 mark]
(c) Prove that finite field has prime characteristic.
[3 marks]
(d) Hence, further prove that a finite field of characteristic p has p^{n} elements for some $\mathfrak{n} \in \mathbb{N}[3$ marks $]$
(e) Give an example of an infinite field of positive characteristic.
[1 marks]
10. Let the extension K / F is Galois, then prove that K is the splitting field of some separable polynomial over F.
[10 marks]
11. Let $\omega=\cos \left(\frac{2 \pi}{7}\right)+i \sin \left(\frac{2 \pi}{7}\right)$, (i.e., ω is one of the seventh root of unity), consider the field $\mathbb{Q}(\omega)$. How many subfields does it have and what are they? Draw a lattice diagram
[10 marks]
