Register Number:

Date: 09-01-2020

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 B.Sc. MATHEMATICS - I SEMESTER SEMESTER EXAMINATION: JANUARY 2021 MT 118 - MATHEMATICS- I

Time- 2 1/2 hrs

Max Marks-70

This paper contains two printed pages and four parts

I. Answer any five of the following:

(5X2=10)

- 1. Define Rank of the matrix.
- 2. Find the eigen values of $A = \begin{bmatrix} 3 & 4 \\ -2 & -3 \end{bmatrix}$
- 3. Evaluate $D^n(e^x \sin x \cos x)$
- 4. Find the total differential of $f(x, y) = \tan^{-1}(\frac{y}{x})$
- 5. Evaluate $\int_0^1 x^{\frac{3}{2}} (1-x)^{\frac{3}{2}} dx$
- 6. Find the angle between two planes whose equations are given by 2x y + z = 6 and x + y + 2z = 3.
- 7. Find the radius and center of the Sphere $16x^2 + 16y^2 + 16z^2 16x 8y 16z 35 = 0$
- 8. Check whether the spheres $x^2 + y^2 + z^2 + 6y + 2z + 8 = 0$ and $x^2 + y^2 + z^2 + 6x + 8y + 4z + 20 = 0$ cut orthogonally.

II. Answer any three of the following:

(3X6=18)

- 9. Find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 2 & 1 & -3 & -6 \\ 3 & -3 & 1 & 2 \end{bmatrix}$ by reducing to normal form.
- 10. Solve the following system of equations.

$$x + 2y - 5z = -13$$

$$3x - y + 2z = 1$$

$$2x - 2y + 3z = 2$$

$$x - y + z = -1$$

- 11. Check whether the given matrix $A = \begin{bmatrix} 2 & -2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ is diagonalizable, if diagonalizable find the matrix P such that $P^{-1}AP = D$.
- 12. Balance the chemical equation, using linear systems. $HCl + Na_3PO_4 \rightarrow H_3PO_4 + NaCl$

III. Answer any five of the following:

(5X6=30)

- 13. Find the nth derivative of (a) $\frac{x^2}{(x+1)(x+2)}$ (b) cosh3x.sin4x (4+2)
- 14. If $y = (x + \sqrt{1 + x^2})^m$ then show that $(1 + x^2)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 m^2)y_n = 0$
- 15. (a) If u = f(y z, z x, x y) then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ (b) If $u = (\theta + \varphi), v = \varphi(1 + \theta)$ show that $\frac{\partial (u,v)}{\partial (\theta,\varphi)} = 1 + \theta + \varphi$ (4+2)
- 16. State and prove Euler's theorem and its extension for homogeneous functions.
- 17. If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x y}\right)$ then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$
- 18. Derive the reduction formula for $\int \sin^m x \cos^n x \, dx$
- 19. Evaluate $\int_0^1 \frac{x^a-1}{\log x} dx$, where a is a parameter, by applying differentiation under integral sign.

IV. Answer any two of the following:

(2X6=12)

- 20. (a) Find the angle between the line $\vec{r} = (2\hat{\imath} + 4\hat{\jmath} + \hat{k}) + \lambda(\hat{\imath} + \hat{\jmath} + \hat{k})$ and the plane x + 2y z = 2.
 - (b) Find the equation of the planes bisecting the angle between the planes x + 2y 2z 9 = 0, 3x 4y + 12z 26 = 0 (2+4)
- 21. Find the equation of the sphere passing through (1,0,0), (0,1,0) and (0,0,1) and has its center on the plane x + y + z = 6.
- 22. Find the equation of the right circular cone whose vertex is at the origin, axis is x = y = z and semi vertical angle is 45° .