

Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.Sc. MATHEMATICS - III SEMESTER SEMESTER EXAMINATION: OCTOBER 2021 (Examination conducted in January-March 2022)

MT 9118- FUNCTIONAL ANALYSIS

Time- 2 1/2 hrs

Max Marks-70

[5+5]

This question paper contains ONE printed page and ONE part Answer any 7 questions

1.

- i. State and Prove parallelogram law of the norm induced by an inner product space.
- ii. Let X_0 be a finite dimensional proper subspace of a normed linear space *X*. Then, prove that there exists $x \in X$ such that ||x|| = 1, $dist(x, X_0) = 1$. [5+5]
- 2. State and prove Gramm Schmidt Orthogonalization. [10]
- 3. State and prove Minkowski's inequality for l^p where 1 . [10]
- 4. Let *X* be a normed linear space. Then, show that *X* is a Banach space iff every absolutely convergent series of elements of *X* is convergent. [10]
- 5. If X_0 is complete subspace of a normed linear space *X* and X/X_0 is a Banach space, then show that *X* is a Banach space. [10]
- 6. State and prove Riesz representation Theorem. [10]

7.

- i. Show that the bounded opereator $\mathcal{B}(X, Y)$ is a subspace of linear operator L(X, Y).
- ii. State and prove Riesz -Fischer Theorem.
- 8. Let *X* be a Hilbert space and *E* be an orthonormal basis of *X*. Then, show that *E* is a basis iff *X* is finite dimensional. [10]
- 9. Let *X* be a normed linear space and Ω be dense subset of *X*. Then, show that *X* is linearly isometric with a subspace of $l^{\infty}(\Omega)$. [10]
- 10. State and prove Open mapping Theorem. [10]