Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 M.Sc. MATHEMATICS - III SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2021
 (Examination conducted in January-March 2022)

MT 9118- FUNCTIONAL ANALYSIS

Time- $21 / 2$ hrs

Max Marks-70
This question paper contains ONE printed page and ONE part

Answer any 7 questions

1.

i. State and Prove parallelogram law of the norm induced by an inner product space.
ii. Let X_{0} be a finite dimensional proper subspace of a normed linear space X. Then, prove that there exists $x \in X$ such that $\|x\|=1, \operatorname{dist}\left(x, X_{0}\right)=1$.
2. State and prove Gramm Schmidt Orthogonalization.
3. State and prove Minkowski's inequality for l^{p} where $1<p<\infty$.
4. Let X be a normed linear space. Then, show that X is a Banach space iff every absolutely convergent series of elements of X is convergent.
5. If X_{0} is complete subspace of a normed linear space X and X / X_{0} is a Banach space, then show that X is a Banach space.
6. State and prove Riesz representation Theorem.
7.
i. Show that the bounded opereator $\mathcal{B}(X, Y)$ is a subspace of linear operator $L(X, Y)$.
ii. State and prove Riesz -Fischer Theorem.
[5+5]
8. Let X be a Hilbert space and E be an orthonormal basis of X. Then, show that E is a basis iff X is finite dimensional.
9. Let X be a normed linear space and Ω be dense subset of X. Then, show that X is linearly isometric with a subspace of $l^{\infty}(\Omega)$.
10. State and prove Open mapping Theorem.

