

Register Number:

DATE:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.Sc. MATHEMATICS – III SEMESTER SEMESTER EXAMINATION: OCTOBER 2021 (Examination conducted in JANUARY-MARCH 2022) MT9218: CLASSICAL AND CONTINUUM MECHANICS

Time- 2 ½ hrs.

Max Marks-70

The paper contains <u>TWO</u> pages.

Answer any <u>SEVEN</u> full questions. Each carrying 10 marks.

- 1. a) Find velocity and acceleration of the particle given by $r = 2e^{\omega t} \sin \omega t$; $\theta = \omega t$, where ω is a constant.
- b) Derive the expression for velocity in cylindrical co-ordinate system. (7+3)
- 2. a) Derive the expression for Coriolis force.
- b) The position vector of two point masses 100kg and 50kg are (3,-2,-4) and (-3,6,-5) respectively. Find the position of the center of mass. (8+2)
- 3. a) For a system of particles derive the expression for conservation of energy.
- b) A 2000kg empty rail cart moves east at 15m/s. A 50kg rock is dropped straight down into the moving cart. What is the final speed of the cart? (8+2)
- 4. a) State and prove Hamilton's principal for holonomic constraints.

b) Solve the Poison's bracket of
$$\{|r|, |p|\} = \{(x^2 + y^2 + z^2)^{\frac{1}{2}}, (P_x^2 + P_y^2 + P_z^2)^{\frac{1}{2}}\}.$$
 (7+3)

5. a) If $D = det(a_{ij})$. Verify that $\varepsilon_{ijk}\varepsilon_{pqr}D = \begin{vmatrix} a_{ip} & a_{iq} & a_{jr} \\ a_{kp} & a_{kq} & a_{kr} \end{vmatrix}$

Hence deduce the following results:

i)
$$\varepsilon_{ijk}\varepsilon_{pqr} = \begin{vmatrix} \delta_{ip} & \delta_{iq} & \delta_{ir} \\ \delta_{jp} & \delta_{jq} & \delta_{jr} \\ \delta_{kp} & \delta_{kq} & \delta_{kr} \end{vmatrix}$$

ii) $\varepsilon_{ijk}\varepsilon_{pqk} = \delta_{ip}\delta_{jq} - \delta_{iq}\delta_{jp}$
iii) $\varepsilon_{ijk}\varepsilon_{pjk} = 2\delta_{ip}$
iv) $\varepsilon_{ijk}\varepsilon_{ijk} = 6$

b) Prove the vector identity using suffix notation

$$(a \times b) \cdot (c \times d) = (a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c)$$
(7+3)

6. a) Given a x_i - system, a vector 'a' has components $a_1 = -1$, $a_2 = 0$, $a_3 = 1$ and a tensor \vec{A}

has its matrix $\begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 2 \\ 0 & -2 & 0 \end{bmatrix}$. The x'_i - system is obtained by rotating the x_i -system

about the x_3 - axis through an angle of 45^0 in the sense of a righthanded screw. Find the components of 'a' and \vec{A} in x'_i - system.

- b) State and prove Gauss Divergence theorem for a tensor. (5+5)
- 7. a) Find the velocity and acceleration field in both material and spatial form for the system of equation $x_1^0 = x_1 \cos \alpha t x_2 \sin \alpha t$ and $x_2^0 = x_1 \sin \alpha t + x_2 \cos \alpha t$.
 - b) For the deformation defined by the system of equations

$$x_1 = \alpha x_1^0 + \beta x_2^0, x_2 = -\alpha x_1^0 + \beta x_2^0, x_3 = \gamma x_3^0$$
 Find F, J and F⁻¹. (5+5)

- 8. a) Derive the expression for normal strain in spatial description.
 - b) Find the path and stream lines for the motion define by velocity components

$$v_1 = \frac{x_1}{1+t}$$
, $v_2 = \frac{2x_2}{1+t}$ and $v_3 = \frac{3x_3}{1+t}$. (4+6)

- 9. a) Derive the expression for Reynold's transport formula.
 - b) Show that the motion of a continuum in circulation is preserved if and only if the acceleration is an irrotational vector. (6+4)
- 10. a) Find the value of k such that $v_1 = kx_3(x_2 2)^2$, $v_2 = -x_1x_2$ and $v_3 = kx_1x_3$, where the velocity components of an incompressible continuum is $div \ \vec{v} = 0$.
 - b) For a continuum body derive the expression for conservation of linear momentum.

(4+6)