Register Number:
DATE:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 M.Sc. MATHEMATICS - III SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2021
 (Examination conducted in JANUARY-MARCH 2022)
 MT9218: CLASSICAL AND CONTINUUM MECHANICS

Time- $21 / 2 \mathrm{hrs}$.
Max Marks-70
The paper contains TWO pages.

Answer any SEVEN full questions. Each carrying 10 marks.

1. a) Find velocity and acceleration of the particle given by $r=2 e^{\omega t} \sin \omega t$; $\theta=\omega t$, where ω is a constant.
b) Derive the expression for velocity in cylindrical co-ordinate system.
2. a) Derive the expression for Coriolis force.
b) The position vector of two point masses 100 kg and 50 kg are $(3,-2,-4)$ and $(-3,6,-5)$ respectively. Find the position of the center of mass.
3. a) For a system of particles derive the expression for conservation of energy.
b) A 2000 kg empty rail cart moves east at $15 \mathrm{~m} / \mathrm{s}$. A 50 kg rock is dropped straight down into the moving cart. What is the final speed of the cart?
4. a) State and prove Hamilton's principal for holonomic constraints.
b) Solve the Poison's bracket of $\{|r|,|p|\}=\left\{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}},\left(P_{x}{ }^{2}+P_{y}{ }^{2}+P_{z}{ }^{2}\right)^{\frac{1}{2}}\right\}$.
5. a) If $D=\operatorname{det}\left(a_{i j}\right)$. Verify that $\varepsilon_{i j k} \varepsilon_{p q r} D=\left|\begin{array}{lll}a_{i p} & a_{i q} & a_{i r} \\ a_{j p} & a_{j q} & a_{j r} \\ a_{k p} & a_{k q} & a_{k r}\end{array}\right|$

Hence deduce the following results:
i) $\varepsilon_{i j k} \varepsilon_{p q r}=\left|\begin{array}{lll}\delta_{i p} & \delta_{i q} & \delta_{i r} \\ \delta_{j p} & \delta_{j q} & \delta_{j r} \\ \delta_{k p} & \delta_{k q} & \delta_{k r}\end{array}\right|$
ii) $\varepsilon_{i j k} \varepsilon_{p q k}=\delta_{i p} \delta_{j q}-\delta_{i q} \delta_{j p}$
iii) $\varepsilon_{i j k} \varepsilon_{p j k}=2 \delta_{i p}$
iv) $\varepsilon_{i j k} \varepsilon_{i j k}=6$
b) Prove the vector identity using suffix notation $(a \times b) \cdot(c \times d)=(a \cdot c)(b \cdot d)-(a \cdot d)(b \cdot c)$
6. a) Given a x_{i} - system, a vector ' a ' has components $a_{1}=-1, a_{2}=0, a_{3}=1$ and a tensor \vec{A} has its matrix $\left[a_{i j}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 2 \\ 0 & -2 & 0\end{array}\right]$. The $x_{i^{\prime}}$ - system is obtained by rotating the x_{i}-system about the x_{3} - axis through an angle of 45° in the sense of a righthanded screw. Find the components of ' a ' and \vec{A} in x_{i}^{\prime} - system.
b) State and prove Gauss Divergence theorem for a tensor.
7. a) Find the velocity and acceleration field in both material and spatial form for the system of equation $x_{1}^{0}=x_{1} \cos \alpha t-x_{2} \sin \alpha t$ and $x_{2}^{0}=x_{1} \sin \alpha t+x_{2} \cos \alpha t$.
b) For the deformation defined by the system of equations

$$
\begin{equation*}
x_{1}=\alpha x_{1}^{0}+\beta x_{2}^{0}, x_{2}=-\alpha x_{1}^{0}+\beta x_{2}^{0}, x_{3}=\gamma x_{3}^{0} . \text { Find } F, J \text { and } F^{-1} . \tag{5+5}
\end{equation*}
$$

8. a) Derive the expression for normal strain in spatial description.
b) Find the path and stream lines for the motion define by velocity components

$$
\begin{equation*}
v_{1}=\frac{x_{1}}{1+t}, v_{2}=\frac{2 x_{2}}{1+t} \text { and } v_{3}=\frac{3 x_{3}}{1+t} . \tag{4+6}
\end{equation*}
$$

9. a) Derive the expression for Reynold's transport formula.
b) Show that the motion of a continuum in circulation is preserved if and only if the acceleration is an irrotational vector.
10. a) Find the value of k such that $v_{1}=k x_{3}\left(x_{2}-2\right)^{2}, v_{2}=-x_{1} x_{2}$ and $v_{3}=k x_{1} x_{3}$, where the velocity components of an incompressible continuum is $\operatorname{div} \vec{v}=0$.
b) For a continuum body derive the expression for conservation of linear momentum.
