## Register Number:

Date:

# ST. JOSEPH’S COLLEGE (AUTONOMOUS), BENGALURU-27 M.SC MATHEMATICS - III SEMESTER 

1. The paper contains two pages.
2. Attempt any SEVEN FULL questions.
3. Each question carries 10 marks.
4. Let $A$ be a ring and let

$$
A[[x]]=\left\{f=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots \mid a_{i} \in A\right\}
$$

be the ring of formal power series with coefficients in $A$.
(a) Show that the contraction of a maximal ideal $\mathfrak{m}$ of $A[[x]]$ is a maximal ideal of A. [6 marks]
(b) Moreover, show that $\mathfrak{m}$ is generated by $\mathfrak{m}^{c}$ and $x$.
(c) In general, is the contraction of a maximal ideal always maximal? Justify.
2. (a) State and prove prime avoidance lemma.
(b) Show that a local ring has only trivial idempotent elements.
3. (a) Let $A$ be a ring and $\operatorname{Nil}(A)$ its nilradical. Show that the following are equivalent:
(i) $A$ has exactly one prime ideal.
(ii) Every element of $A$ is either a unit or a nilpotent.
(iii) $A / \operatorname{Nil}(A)$ is a field.
(b) Show that $\left(\frac{\mathbb{Q}}{\mathbb{Z}}\right) \otimes_{\mathbb{Z}}\left(\frac{\mathbb{Q}}{\mathbb{Z}}\right)=0$.
(c) Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are not isomorphic as $\mathbb{R}$-modules.
4. (a) Let $M$ be a finitely generated $A$ - module and $S$ be a multiplicatively closed subset of $A$. Show that $S^{-1}(\operatorname{Ann}(M))=\operatorname{Ann}\left(S^{-1} M\right)$.
(b) Show by an example that the condition " $M$ is a finitely generated $A$-module" in 4(a) is necessary.
5. Let $A$ be a nonzero ring and let $\Sigma$ be the set of all multiplicatively closed subsets $S$ of $A$ such that $0 \notin S$. Show that $\Sigma$ has maximal elements, and that $S \in \Sigma$ is maximal if and only if $A-S$ is a minimal prime ideal of A.
6. Prove 'Lying over theorem': "Let $B / A$ be an integral extension. Every prime ideal of $A$ is contraction of a prime ideal of $B$. Further, two distinct prime ideals $q$ and $q^{\prime}$ of $B$ such that $q \subset q^{\prime}$ cannot contract to the same prime ideal of $A$.
[10 marks]
7. Let $M$ be a module having a composition series of length $n$. Show that any composition series of $M$ has length $n$. Moreover, show that any decreasing chain of submodules can be extended to a composition series of $M$.
8. Show that in a Noetherian ring every ideal has a primary decomposition by proving the following results,
(a) In a Noetherian ring every ideal is a finite intersection of irreducible ideals.
(b) In a Noetherian ring every irreducible ideal is primary.
9. State and prove Hilbert Basis theorem.
10. (a) Prove that in an Artin ring every prime ideal is maximal.
(b) Prove that an Artin ring has only finitely many maximal ideals.

