Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 M.Sc MATHEMATICS - III SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2021
 (Examination conducted in JANUARY-MARCH 2022)
 MTDE9418 - MATHEMATICAL METHODS

Time- $21 / 2 \mathrm{hrs}$
Max Marks- 70
This question paper contains TWO printed pages.
Answer any SEVEN FULL questions.
$7 \times 10=70$ Marks

1. a) Solve the Fredholm integral equation of second kind by the method of separable kernels, given that $u(x)=e^{x}+\lambda \int_{0}^{1} 2 e^{x} e^{t} u(t) d t$.
b) Find the iterated kernel $K_{1}(x, t), K_{2}(x, t), K_{3}(x, t)$ for the Volterra integral equation with kernel $K(x, t)=\frac{2+\cos x}{2+\cos t}$.
2. a) Find the resolvent kernel for the integral equation $\phi(x)=x^{2}+\int_{0}^{x} e^{t-x} \phi(t) d t$.
b) Solve the integral equation $u(x)=1+2 \sin x-\int_{0}^{x} u(t) d t$ using Laplace Transform method.
3. Find eigen values and the corresponding eigen functions of an integral equation
$y(x)=\lambda \int_{0}^{2 \pi} \sin (x+t) y(t) d t$ with degenerate kernel.
4. a) Derive the small x behaviour of $\int_{0}^{1} \frac{\sin (t x)}{t} d t$ as $x \rightarrow 0$.
b) Given $I(x)=\int_{0}^{\infty} e^{-x \sinh ^{2} t} d t$ as $x \rightarrow \infty$, find the leading term of the asymptotic expansion.
5. State and Prove Watson's lemma and hence evaluate $\int_{0}^{5} \frac{e^{-x t}}{1+t^{2}} d t$ as $x \rightarrow \infty$.
6. a) Solve $y^{\prime}=x+2 y, y(0)=0$ using Euler's method to determine $y(0.4)$ by taking step size $h=0.1$.
b) Apply Runge-kutta method of second order, find the value of y at $x=0.01$, given that $\frac{d y}{d x}=x^{2}+y$ and $y_{0}=1$ when $x_{0}=0$, by taking $h=0.01$ as step size.
7. Find $y(0.1), y(0.2), y(0.3)$ from $y^{\prime}=x^{2}-y, y(0)=1$ by using Taylor's series method and hence obtain $y(0.4)$ by using Adams-Bashforth method.
8. Solve the Poisson's equation $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the square with sides $x=0=y, x=3=y$ with $u=0$ on the boundary and mesh length equal to 1 . Perform 3 iterations using Gauss seidel method.
9. Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions $u(x, 0)=\sin \pi x, 0 \leq x \leq 1$, $u(0, t)=0=u(1, t)$. Carryout computations for two levels by taking $h=\frac{1}{3}, k=\frac{1}{36}$.
10. Solve the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}$, given that $u(0, t)=0=u(4, t), u_{t}(x, 0)=0$ and $u(x, 0)=x(4-x)$ by taking $h=1, k=0.5$ up to 4 steps.
