

Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.SC MATHEMATICS - III SEMESTER SEMESTER EXAMINATION: OCTOBER, 2021 (Examination conducted in January-March 2022) <u>MTDE 9518: ALGEBRAIC TOPOLOGY</u>

Duration: 2.5 Hours

Max. Marks: 70

1. The paper contains two pages.

2. Answer any **SEVEN FULL** questions.

3. All multiple choice questions have 1 or more than one correct option. Full marks will be awarded only for writing **all correct options** in your answer script.4. All true or false questions must be justified.

1.	a) Show that the relation of path homotopy defines an equivalence relation on the set of all paths in X from x_0 to x_1 . [6]
	b) True/False: If $A \cap B \neq \emptyset$ and A, B are contractible then so is $A \cup B$. [4]
2.	a) Show that the operation "*", of concatenation, is associative on the set of path homotopy classes of loops in X based at x_0 . [6]
	b) True/False: If two spaces are homeomorphic then they have isomorphic fundamental groups. [4]
3.	a) Show that a covering map is an open map. [7]
	b) True/False: If $p: E \to B$ is a covering map and B is compact then so is E. [3]
4.	a) Show that the quotient map $q: S^2 \to \mathbb{RP}^2$ is an open map and hence show it is a covering map. [7]
	b) Pick out the true statement(s) for a covering map $p: E \to B$ [3]
	i. If E is contractible then so is B . iii. If E is simply connected then so is B .
	ii. If B is connected then so is E . iv. if B is simply connected then so is E .
5.	a) Show that the fundamental group of the circle is isomorphic to the additive group of integers. [7]

b) Which of the following spaces is/are simply connected subsets of \mathbb{R}^2 ? [3]

- 6. a) State the homotopy lifting lemma. Let $p: E \to B$ be a covering map and let $p(e_0) = b_0$. Let f and g be two paths in B from b_0 to b_1 . Let \tilde{f} and \tilde{g} be their respective lifts beginning at e_0 . Show that if f and g are path homotopic then \tilde{f} and \tilde{g} end at the same point and are also path homotopic. [2+4]
 - b) Let $p : \mathbb{R} \to S^1$ be the map $p(t) = (\cos 2\pi t, \sin 2\pi t)$. Which of the following is/are a lift of the path $f(s) = (\cos(\frac{\pi}{2} + \pi s), \sin(\frac{\pi}{2} + \pi s))$ via p? [4]

- 7. a) Let $h: S^1 \to X$ be a continuous function. Show that if h is nulhomotopic then h extends to a continuous map $k: B^2 \to X$. [7]
 - b) Which of the following are nulhomotopic?
 - i. The antipodal map $h: S^1 \to S^1$ given iii. The projection map $h: S^1 \to [-1,1]$ by $h(x_1, x_2) = -(x_1, x_2)$. given by $h(x_1, x_2) = x_1$. ii. The identity map $id: S^1 \to S^1$. iv. The inclusion map $j: S^1 \to \mathbb{R}^2$.

[3]

- 8. a) Give an example of a contractible space. Show that a space is contractible if and only if it has the homotopy type of a point. [1+5]
 - b) Classify the following symbols according to homotopy type of a point, a circle and a figure eight: [4]

- 9. a) Suppose $X = U \cup V$, where U and V are open subsets of X. Suppose that $U \cap V$ is path connected and $x_0 \in U \cap V$. Let $i : U \hookrightarrow X$ and $j : V \hookrightarrow X$ be the respective incusion maps. Show that the images of the induced homomorphisms $i_{\#} : \pi_1(U, x_0) \to \pi_1(X, x_0)$ and $j_{\#} : \pi_1(V, x_0) \to \pi_1(X, x_0)$, generate $\pi_1(X, x_0)$. [8]
 - b) What will $\pi_1(X)$ be if both $i_{\#}$ and $j_{\#}$ are trivial in the above question? [2]
- 10. a) Show that any continuous function $f : B^2 \to B^2$ has a fixed point. Further, if A is a retract of B^2 then show that any continuous function $f : A \to A$ has a fixed point. [7]
 - b) Let $f: [-1,1] \rightarrow [-1,1]$ be a function satisfying $|f(x) f(y)| \le \frac{1}{2}|x-y|$. Then the number of fixed points of f is: i. 0 ii. 1 iii. infinite iv. finite [3]