

Date:

Registration Number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.Sc. BIG DATA ANALYTICS - I SEMESTER SEMESTER EXAMINATION: FEBRUARY 2022 (Examination conducted in January-March 2022) BDA 1321 – LINEAR ALGEBRA AND LINEAR PROGRAMMING

TIME: 2.5 HOURS

MAX MARKS: 70

This question paper contains FOUR pages and THREE parts

Notations (unless stated otherwise):

α, β	scalar
r, u, v, w	vector
R	real line
E	belongs to
()	anything enclosed within () is a column vector
<i>w</i> . <i>r</i> . <i>t</i> .	with respect to

PART-A

Answer ALL 20 questions (MCQs: only ONE correct answer) 20 X 1 = 20

- 1. Geometric Vectors in 3D space are directed line segments with *tail* at the ordered triplet (1,1,1). a. True
 - a. True b. b. False
 - D. D. Faise
- 2. Which of the following is NOT true? $\alpha(u + v) =$
 - a. $\alpha(v+u)$
 - b. b. $\alpha u + v$
 - c. c. $\alpha u + \alpha v$
- 3. $(1,0) \in \text{Span}(0,1)$.
 - a. True
 - b. b. False
- 4. Which of the statements is NOT true for two geometric vectors u & v.
 - a. Linearly Independent iff they do NOT lie on the same line
 - b. Linearly Independent iff $\alpha u + \beta v = 0$ only when $\alpha = 1 \& \beta = 0$
 - c. Linearly Independent iff $\alpha u + \beta v = 0$ only when $\alpha = 0 \& \beta = 0$
- 5. The set $\{(1,0), (0,0)\}$ is Linearly Independent.
 - a. True
 - b. b. False
- 6. The shape of each grid in Skewed Cartesian Grids is a Square
 - a. True
 - b. b. False
- 7. Which of the following function is Bijective?

a. f(x) = x

b. b.
$$f(x) = x^2$$

- c. c. f(x) = |x|
- 8. Which of the following is a valid decomposition of $r = (4\alpha, 3\alpha, 7\alpha) w.r.t. u = (4,0,0) \& v = (0,0,7)$? Note: First coefficient scales u & second v.
 - a. 4.α
 - b.
 - c. b. α, 7
 - d. c. α, α
 - e. d. decomposition is NOT possible
- 9. $W = \{(\alpha, 0) : \alpha \in \mathbb{R}^+\}$ is a Vector Space.
 - a. True
 - b. b. False

10. $W = \{(\alpha, 0) : \alpha \in R\}$ is a subspace of $V = \{(\alpha) : \alpha \in R\}$.

- a. True
- b. b. False
- 11. Intersection of two lines in a plane is a Vector Space.
 - a. True
 - b. b. False
- 12. Given $B = \{(1,0), (0,1), (1,1)\}$ of \mathbb{R}^2 . Which of the "criteria of a Basis set" does B violate? a. B is Linearly Independent
 - b. b. $Span(B) = R^2$
 - c. B is Linearly Dependent

13. What is the dimension of the Vector Space $W = \{(\alpha, \beta, \alpha + \beta) : \alpha \in R, \beta \in R\}$?

- a. 1
- b. b. 2
- c. c. 3
- 14. In a matrix-vector multiplication, the elements of the vector scale the rows of the matrix.
 - a. True
 - b. b. False

15. Given a square matrix with linearly dependent columns, then determinant of the matrix is non-zero.

- a. True
- b. b. False
- 16. For which matrix given below, the determinant gets squished?
 - a. $\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$
 - b. $\begin{bmatrix} \pi & 0 \\ 0 & 1 \end{bmatrix}$

- c. 0.75
- 17. Given a square matrix with linearly independent columns, then which of the following is NOT true? a. The determinant is non-zero
 - b. The matrix is a Bijective linear transformation
 - c. The inverse of the matrix exists
 - d. It has a non-trivial null space
- 18. What are the eigenvalues of reflection linear transformation?
 - a. 1,0
 - b. b. 1, −1

c. c. 0, −1

19. Which of the following is NOT the null space of the matrix $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$?

- a. $\{\alpha(2, -1): \alpha \in R\}$
- b. b. $\{\alpha(2, -4): \alpha \in R\}$
- c. c. { $\alpha(-8,4): \alpha \in R$ }

20. Which is the following is the column space of the matrix $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$?

- a. R¹
- b. b. *R*²
- c. c. *R*³

PART-B

Answer ANY SIX questions

6 X 5 = 30

2 X 10 = 20

- 21. State any 5 properties of a vector.
- 22. Define Linearly Independent and Linearly Dependent sets. Illustrate with two examples for each. Explain the examples both in terms of algebra and geometry wherever applicable. (1+2+2)
- 23. Given three vectors in 3D space. What is(are) the span of these three vectors.
- 24. Define a Vector Space. Illustrate an example in Geometric Vector Space and give two spanning sets for the example chosen. Similarly, illustrate an example in R^n Vector Space and give two spanning sets for the example chosen. (1+2+2)
- 25. Show that $A = \{\alpha(1,1) : \alpha \in R\} \& B = \{\alpha(2,1) : \alpha \in R\}$ are subspaces of R^2 . Also, show that $A \cap B$ is a subspace of R^2 . (2+2+1)
- 26. Briefly explain the terms: Linear Programming, Objective Function, Constraints & Optimization Problems.
- 27. Solve the following Linear Programming Problem graphically:

maximize z = 4x + y w.r.t.constraints $x + y \le 50, 3x + y \le 90, x \ge 0, y \ge 0$.

28. A manufacturing company makes two models A and B of a product. Each piece of Model A requires 9 labour hours for fabricating and 1 labour hour for finishing. Each piece of Model B requires 12 labour hours for fabricating and 3 labour hours for finishing. For fabricating and finishing, the maximum labour hours available are 180 and 30 respectively. The company makes a profit of Rs. 8000 on each piece of model A and Rs. 12000 on each piece of Model B. How many pieces of Model A and Model B should be manufactured per week to realise a maximum profit? What is the maximum profit per week?

PART-C

Answer ANY TWO questions

29. Show that $W = \{(\alpha, \beta, \alpha + \beta, \alpha - \beta) : \alpha \in R, \beta \in R\}$ is a vector space. Find a basis set and dimension of *W*. (3+5+2)

30.

a. Solve the following system of linear equations using Gaussian Elimination (Use column and null spaces).
 (5)

$$2x + 2z = 0$$

$$2x + y + 2z = 1$$

$$w + 4x + 3y + 4z = 0$$

Note: w, x, y & z are variables, not vectors. b. When a matrix is said to be in Row Reduced Echelon Form (RREF)? What is the rank of a matrix? What is the role of RREF in calculating the rank? Illustrate with an example.

(1+2+2)

31. Explain eigenvalues and eigenvectors of	
a. any square matrix with linearly independent	columns. (3)
b. any square matrix with linearly dependent c	olumns. (3)
c. projection linear transformation.	(4)