Date:

Registration number:

Time: $21 / 2 \mathrm{hrs}$

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27

M.Sc. MATHEMATICS - I SEMESTER

SEMESTER EXAMINATION: OCTOBER 2021
(Examination conducted in January-March 2022)

Max Marks: 70

This question paper contains two printed pages.

Answer any 7 questions

1. a) Define $G L_{n}(\mathbb{F})$. If \mathbb{F} is a finite field with q elements, then what is $\left|G L_{n}(\mathbb{F})\right|$?
b) Describe cycle decomposition algorithm. Find the cycle decomposition of

$$
\left(\begin{array}{l}
1 \tag{2}\\
213456789 \\
216459378
\end{array}\right) .
$$

c) Give examples of subgroups H and K of a group G such that $H \unlhd K \unlhd G$ but H is not a normal subgroup of G , where \unlhd stands for 'is a normal subgroup of'.
2. a) Let G be a group. Show that G acting on itself as $g \cdot a=a g^{-1}, \forall a, g \in G$ is a group action.
b) Let G be a group acting on a set A . For each fixed $g \in G$, define $\sigma_{\mathrm{g}}: \mathrm{A} \rightarrow \mathrm{A}, \sigma_{\mathrm{g}}(\mathrm{a}):=$ $\mathrm{g} \cdot \mathrm{a}$. Prove that the map from G to S_{A} defined by $\mathrm{g} \rightarrow \sigma_{\mathrm{g}}$ is a group homomorphism.
c) List representatives of all conjugacy classes of S_{4}.
3. a) State and prove the Class Equation.
b) Find $\tau^{-1} \sigma \tau$ in S_{5} where $\tau=(123)(45)$ and $\sigma=(14)(25)$.
c) Pick out which of the following CANNOT be the class equation of the group?
i) $9=1+2+3+3$
ii) $3=1+1+1$
iii) $10=1+2+2+2+3$
iv) $6=1+2+3$
4. a) Prove that the automorphism group of the cyclic group of order n is isomorphic to $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
b) Find the $\left|\operatorname{Aut}\left(Z_{23}\right)\right|$. Is $\operatorname{Aut}\left(Z_{23}\right)$ be cyclic? Justify.
5. a) Show that all Sylow p-subgroups of a group G of order 35 is normal and characteristic in G. Also find the order of Sylow subgroups.
b) Let $P \in S y l_{p}(G)$. Prove that P is a unique Sylow p -subgroup iff P is normal.
6. a) State Fundamental Theorem of Finite Abelian Groups.
b) Let $G=\{1,4,11,14,16,19,26,29,31,34,41,44\}$ under multiplication modulo 45.

Express it as a direct product of cyclic groups.
7. a) State Division Algorithm of $F[x]$, where F is a field.
b) Prove that a polynomial of degree n over a field has at most n zeros, counting multiplicity.
c) Find the reminder and quotient on dividing $f(x)=3 x^{4}+x^{3}+2 x^{2}+1$ by $g(x)=$ $x^{2}+4 x+2$ in $\mathbb{Z}_{5}[x]$.
8. a) State and prove Gauss's Lemma.
b) Check whether the polynomial $2 x^{3}+x+7$ is irreducible over \mathbb{Q}. Justify your answer.
c) Find the roots of the polynomial $x^{3}-3 x^{2}+2 x+6$ over \mathbb{Q}.
9. a) Show that the ideal $\left\langle x^{4}+x^{3}+x^{2}+x+1\right\rangle$ is maximal ideal in $\mathbb{Q}[x]$.
b) Give a field with 9 elements with proper justification.
c) Show that the polynomial $2 x^{2}-6$ does not have a zero in \mathbb{Z}, but is reducible over \mathbb{Z}. Check whether the polynomial is irreducible over \mathbb{Q} and \mathbb{R}.
10. a) Define a prime element in an integral domain D. Give an example.
b) Show that $1+\sqrt{-3} \in \mathbb{Z}[\sqrt{-3}]$ is irreducible.
c) Prove that in an integral domain, every prime is an irreducible.

