Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 M.Sc. MATHEMATICS - I SEMESTER SEMESTER EXAMINATION: OCTOBER 2021 (Examination conducted in January-March 2022)

<u>MT 7121 – ALGERBA I</u>

Time: 2 ½ hrs

Max Marks: 70

This ausstian	nonor	containc	+	nrintad	00000
This duestion	Daper	contains	LWO	printea	Dages.
	1				1

Answer any 7 questions

1.	a) Define $GL_n(\mathbb{F})$. If \mathbb{F} is a finite field with b) Describe cycle decomposition algorith $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 6 \end{pmatrix}$	th q elements, then what is $ GL_n(\mathbb{F}) $? hm. Find the cycle decomposition of 456789).	(2) (6)		
	c) Give examples of subgroups H and K of a normal subgroup of G, where ⊴ state	of a group G such that $H \trianglelefteq K \trianglelefteq G$ but H is not nds for 'is a normal subgroup of'.	(2)		
2.	a) Let G be a group. Show that G acting on itself as $g \cdot a = ag^{-1}$, $\forall a, g \in G$ is a group action.				
	b) Let G be a group acting on a set A. For each fixed $g \in G$, define $\sigma_g: A \to A$, $\sigma_g(a) := g \cdot a$. Prove that the map from G to S_A defined by $g \to \sigma_g$ is a group homomorphism. c) List representatives of all conjugacy classes of S_A .				
	,	T	(4)		
3.	a) State and prove the Class Equation.		(6)		
	b) Find $\tau^{-1}\sigma\tau$ in S ₅ where $\tau = (123)(45)$ and $\sigma = (14)(25)$.				
	c) Pick out which of the following CANNOT be the class equation of the group?				
	i) 9 = 1 + 2 + 3 + 3 ii) i	3 = 1 + 1 + 1			
	iii) 10 = 1 + 2 + 2 + 2 + 3 iv)	6 = 1 + 2 + 3			
4.	a) Prove that the automorphism group $(\mathbb{Z}/n\mathbb{Z})^{\times}$.	of the cyclic group of order n is isomorphic to	(8)		
	b) Find the Aut(Z ₂₃) . Is Aut(Z ₂₃) be cyclic? Justify.				
5.	a) Show that all Sylow p-subgroups of a group G of order 35 is normal and				
	characteristic in G. Also find the order of Sylow subgroups.				
	b) Let $P \in Syl_p(G)$. Prove that P is a un	ique Sylow p-subgroup iff P is normal.	(3)		
6.	a) State Fundamental Theorem of Finite Abelian Groups.				
	b) Let $G = \{1,4,11,14,16,19,26,29,31,34,41,44\}$ under multiplication modulo 45.				
	Express it as a direct product of cycli	c groups.			

7.	a) State Division Algorithm of $F[x]$, where F is a field.	(2)			
	b) Prove that a polynomial of degree <i>n</i> over a field has at most <i>n</i> zeros, counting	(6)			
	multiplicity.	(2)			
	c) Find the reminder and quotient on dividing $f(x) = 3x^4 + x^3 + 2x^2 + 1$ by $g(x) = x^2 + 4x + 2$ in $\mathbb{Z}_5[x]$.				
8.	a) State and prove Gauss's Lemma.	(6)			
	b) Check whether the polynomial $2x^3 + x + 7$ is irreducible over \mathbb{Q} . Justify your answer.	(2)			
	c) Find the roots of the polynomial $x^3 - 3x^2 + 2x + 6$ over \mathbb{Q} .	(2)			
9.	a) Show that the ideal $\langle x^4 + x^3 + x^2 + x + 1 \rangle$ is maximal ideal in $\mathbb{Q}[x]$.	(3)			
	b) Give a field with 9 elements with proper justification.	(3)			
	c) Show that the polynomial $2x^2 - 6$ does not have a zero in \mathbb{Z} , but is reducible over \mathbb{Z} . Check whether the polynomial is irreducible over \mathbb{Q} and \mathbb{R} .	(4)			
10.	a) Define a prime element in an integral domain D. Give an example.	(2)			
	b) Show that $1 + \sqrt{-3} \in \mathbb{Z}[\sqrt{-3}]$ is irreducible.	(4)			
	c) Prove that in an integral domain, every prime is an irreducible.	(4)			