Duration: 2.5 Hours
Max. Marks: 70

1. The paper contains TWO pages.
2. Attempt any SEVEN FULL questions.
3. All multiple choice questions have one or more correct option. Write all the correct options in your answer booklet.
4. a) Give an example of a sequence of partitions of $[0,1]$. Using sequences of partitions, show that the function $f:[0,1] \rightarrow \mathbb{R}$ defined by $f(x)=e^{x}$ is integrable.
b) The value of $\lim _{n \rightarrow \infty}\left(\frac{n}{n^{2}+1}+\frac{n}{n^{2}+4}+\frac{n}{n^{2}+9}+\frac{n}{n^{2}+16}+\cdots+\frac{n}{n^{2}+4 n^{2}}\right)$ is:
i. $\tan ^{-1}(0)$
ii. $\tan ^{-1}(1)$
iii. $\tan ^{-1}(2)$
iv. $\tan ^{-1}(4)$
5. a) Show that if f is integrable on $[a, b]$ and if $f(x)=g(x)$ for all $x \in[a, b]$ except at $\alpha \in[a, b]$, then g is Riemann integrable and $\int_{a}^{b} f=\int_{a}^{b} g$.
b) Which of the following is/are true?
i. If f is continuous and g is integrable then $f \circ g$ iii. If f is differentiable and g is integrable then $f \circ g$ is integrable. is integrable.
ii. If f and g are integrable then $f \circ g$ is integrable. iv. If f and g are continuous then $f \circ g$ is integrable.
6. a) If f is continuous on $[a, b]$ and $\int_{a}^{b} f=0$ then prove that there is a point $c \in[a, b]$ such that $f(c)=0$. Further, if $f \geq 0$ then prove that $f=0$ for all $x \in[a, b]$.
b) The value of $\lim _{x \rightarrow 0} \frac{1}{x} \int_{x}^{2 x} e^{-t^{2}} d t$ is,
i. 1
ii. 0
iii. ∞
iv. oscillates
7. a) Let $\left\{f_{n}\right\}$ be a sequence of functions such that $\left|f_{n}(x)\right| \leq L_{n}$ for all x where $L_{n}>0$ for all n. Show that if f_{n} converges uniformly to f then f is bounded.
b) Examine the convergence of $f_{n}(x)=\frac{x^{n}}{1+x^{n}}$ in the range $[0,2]$.
c) Let f_{n} be a sequence that converges to f. In which of the following cases is $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}=\int_{0}^{1} f$? $[3 \mathrm{~m}]$
i. $f_{n}(x)=n x\left(1-x^{2}\right)^{n}, f=0$
iii. $f_{n}(x)=\frac{x}{n}, f=0$
ii. $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}, f=0$
iv. $f_{n}(x)=\left\{\begin{array}{ll}n x^{2}, & 0 \leq x \leq 1 / n \\ x, & 1 / n \leq x \leq 1\end{array} \quad, f=x\right.$
8. a) Show that the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{x+n}{n^{2}}$ is uniformly convergent.
b) The power series $\sum_{n=1}^{\infty}(-1)^{n} \frac{(x+1)^{n}}{n+1}$ converges on
i. $[0,2)$
ii. $(0,2)$
iii. $(-2,0]$
iv. $[-2,0]$
9. a) Show that every superset of an infinite set is infinite and every subset of a finite set is finite
b) Which of the following is/are true for a function $f: X \rightarrow Y$?
i. If f is injective and Y is countable then so is $X \quad$ iii. If f is injective and X is countable then so is Y
ii. If f is surjective and Y is countable then so is iv. If f is surjective and X is countable then so is X Y.
10. a) Show that $d: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $d(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$ is metric on \mathbb{R}^{n}. Further, compute the distance from $(1,1, \cdots, 1)$ to $(1,2,3, \cdots, n)$.
b) Let $d(f, g)=\int_{0}^{1}|f(x)-g(x)| d x$. On which of the following sets is d a metric?
i. Set of continuous functions on $[0,1]$
ii. Set of monotonic functions on $[0,1]$
iii. Set of differentiable functions on $[0,1]$
iv. Set of integrable functions $[0,1]$
11. a) Define a closed sphere and a closed set in a metric space. Prove that in a metric space, every closed sphere is a closed set.
b) Which of the following are true for subsets A, B of \mathbb{R} with usual metric?
i. $\operatorname{int}(A \cap B)=\operatorname{int}(A) \cap \operatorname{int}(B)$
iii. $\overline{(A \cap B)}=\bar{A} \cap \bar{B}$
ii. $\operatorname{int}(A \cup B)=\operatorname{int}(A) \cup \operatorname{int}(B)$
iv. $\overline{(A \cup B)}=\bar{A} \cup \bar{B}$
12. a) State and prove the Baire's category theorem.
b) Which of the following metric spaces are complete?
i. $(0,1)$ with discrete metric $d(x, y)=0$ if $x=y$ and 1 otherwise.
ii. $(0,1)$ with metric $d_{1}(x, y)=\min \{d, 1\}$ where d is usual metric
iii. $(0,1)$ with metric $d_{1}(x, y)=\min \{d, 1\}$ where d is discrete metric
iv. $(0,1)$ with usual metric $d(x, y)=|x-y|$
13. a) Prove that a subset of a complete metric space is closed if and only if it is complete.
b) Which of the following is/are true for a continuous function $f: X \rightarrow Y$?
i. If $\left\{x_{n}\right\}$ is Cauchy then so is $\left\{f\left(x_{n}\right)\right\}$
ii. If $\left\{f\left(x_{n}\right)\right\}$ is Cauchy then so is $\left\{x_{n}\right\}$
iii. If $\left\{x_{n}\right\}$ is convergent then so is $\left\{f\left(x_{n}\right)\right\}$
iv. If $\left\{f\left(x_{n}\right)\right\}$ is convergent then so is $\left\{x_{n}\right\}$
