Register Number:
Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE - 27
M.Sc MATHEMATICS - I SEMESTER

SEMESTER EXAMINATION: OCTOBER 2021
(Examination conducted in January-March 2022)
MT 7321: LINEAR ALGEBRA
Duration: 2.5 Hours
Max. Marks: 70

1. The paper contains three printed pages.
2. Attempt any SEVEN FULL questions.
3. In objective type questions, one or more options could be correct. Full marks will be awarded only if all the options are correctly marked.
4. a) Let $K$ be a field and $V=M_{n}(K)$. Let $W=\left\{A \in M_{n}(K) \mid A=A^{t}\right\}$. Show that $W$ is a subspace of $V$. Also, find a basis of $W$ and compute the $\operatorname{dim}(W)$.
b) Let $V=\mathcal{P}_{n}(\mathbb{R}), W_{1}=\{p(x) \in V \mid p(0)=0\}$ and $W_{2}=\{p(x) \in V \mid p(1)=0\}$. Pick the correct statement(s) from the options given below.
(i) $\operatorname{dim}\left(W_{1}\right)=\operatorname{dim}\left(W_{2}\right)=n-1$.
(iii) $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=n-1$.
(ii) $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=n-2$.
(iv) $\operatorname{dim}\left(W_{1}\right)=\operatorname{dim}\left(W_{2}\right)=n$.
[2m]
5. a) Let $V$ and $W$ be two vector spaces over $\mathbb{Q}$ and $T: V \rightarrow W$ be a function. Prove that $T$ is additive (i.e., $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$, for every $\left.v_{1}, v_{2} \in V\right)$ if and only if $T$ is linear.
[7m]
b) Let $T: V \rightarrow W$ be a linear transformation and $\mathcal{B}$ be a basis of $V$. Then pick the correct statement(s) from the options given below.
(i) If $T$ is onto, then $T(\mathcal{B})$ is a basis for $W$.
(iii) If $T$ is onto, then $T(\mathcal{B})$ contains a basis of $W$.
(ii) If $T$ is one-one, then $T(\mathcal{B})$ is a basis for $R(T)$, the range space of $T$.
(iv) If $T$ is one-one, then $T(\mathcal{B})$ is a basis for $W$. [3m]
6. a) Let $V$ be a finite dimensional vector space over a field $K$. Prove that eigenvectors corresponding to distinct eigenvalues are linearly independent. Further, if $\operatorname{dim}(V)=n$ and $T$ has $n$ distinct eigenvalues, prove that there exists a basis of $V$ consisting of eigenvectors of $T$.
b) Pick the correct statement(s) from the options given below.
(i) An idempotent linear map on a finite dimensional space is always diagonalizable.
(ii) An idempotent linear map on a finite dimensional space need not be diagonalizable always.
(iii) An upper triangular matrix is always diagonalizable.
(iv) An upper triangular matrix with distinct diagonal entries is always diagonalizable.
7. a) Compute the characteristic polynomial and the minimal polynomial of the matrix

$$
A=\left(\begin{array}{rrrrrr}
-1 & 2 & 3 & 0 & 0 & 0 \\
0 & -1 & 2 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 1 & 0 \\
0 & 0 & 0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & 2 & -3
\end{array}\right) .
$$

b) Let $K$ be a field and $A \in M_{n}(K)$. Let $I, O$ be the identity matrix and the zero matrix respectively, in $M_{n}(K)$. Pick the correct statement(s) from the options given below.
(i) If $A$ is similar to $I$, then $A=I$.
(iii) If $A$ is similar to $O$, then $A=O$.
(ii) If $A$ is similar to $I$, then $A$ need not be equal to $I$.
(iv) If $A$ is similar to $O$, then $A$ need not be equal to $O$.
5. a) Let $V$ be a finite dimensional vector space over a field $K$ and $T \in \operatorname{End}(V)$. Let $\lambda$ be an eigenvalue of $T$. Prove that the geometric multiplicity of $\lambda$ is less than or equal to the algebraic multiplicity of $\lambda$.
b) Suppose $V(F)$ is a 6 dimensional vector space and $T \in \operatorname{End}(V)$. Write the Jordan canonical form of $T$ if the minimal polynomial of $T$ is $(x-2)^{3}(x-5)$, the algebraic multiplicity of 2 is 5 and the geometric multiplicity of 2 is 2 .
[2m]
c) Let $V$ be a finite dimensional vector space over the field $\mathbb{C}$ and $T \in \operatorname{End}(V)$. Pick the correct statement(s) from the options given below.
(i) If algebraic multiplicity of each eigenvalue of $T$ is equal to the corresponding geometric multiplicity, then there exists a basis of $V$ consisting of eigenvectors of $T$.
(ii) Algebraic multiplicity of each eigenvalue of $T$ is equal to the corresponding geometric multiplicity if and only if there exists a basis of $V$ consisting of eigenvectors of $T$.
(iii) If $T$ is diagonalizable, then algebraic multiplicity of each eigenvalue of $T$ is equal to the corresponding geometric multiplicity.
(iv) $T$ can be diagonalizable even if the algebraic multiplicity of an eigenvalue is strictly bigger than the corresponding geometric multiplicity.
6. a) Define an inner product space. Prove that the function $\langle\rangle:, \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ defined by

$$
\langle u, v\rangle=\alpha_{1} \bar{\beta}_{1}+\cdots+\alpha_{n} \overline{\beta_{n}},
$$

where $u=\left(\alpha_{1}, \cdots, \alpha_{n}\right), v=\left(\beta_{1}, \cdots, \beta_{n}\right) \in \mathbb{C}^{n}$, is an inner product on $\mathbb{C}^{n}$.
b) Let $V$ be an inner product space over a field $K$. Prove that $\langle u, \alpha v+\beta w\rangle=\bar{\alpha}\langle u, v\rangle+\bar{\beta}\langle u, w\rangle, \forall u, v, w \in V$ and $\forall \alpha, \beta \in K$.
7. Let $V$ be the inner product space of real valued continuous functions on the interval $[-\pi, \pi]$ with the inner product defined by,

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(t) g(t) d t
$$

Show that the set $\{1, \cos t, \cos 2 t, \ldots, \sin t, \sin 2 t, \ldots\}$ is an orthogonal set in $V$. Also find the corresponding orthonormal set.
[10m]
8. a) Let $V$ be a finite dimensional inner product space and $T, S \in \operatorname{End}(V)$. Show that
i) $(T+S)^{*}=T^{*}+S^{*}$.
ii) $(T S)^{*}=S^{*} T^{*}$.
[6m]
b) Let $T$ be a linear map on a finite dimensional inner product space and $W$ be an invariant subspace of $T$. Prove that $W^{\perp}$ is invariant under $T^{*}$, where $T^{*}$ is the adjoint of $T$.
c) Pick the correct statement(s) from the options given below.
(i) If $A \in M_{n}(\mathbb{R})$ is a symmetric matrix, then the eigenvalues of $A$ are always real.
(ii) If $A \in M_{n}(\mathbb{C})$ is a symmetric matrix, then the eigenvalues of $A$ are always real.
(iii) Hermitian matrices are always diagonalizable.
(iv) If $A$ is a Hermitian matrix, then eigenvectors corresponding to distinct eigenvalues of $A$ are orthogonal.
[2m]
9. a) Let $P$ be a self-adjoint operator on a finite dimensional inner product space $V$. Show that $P$ is positive definite if and only if all eigenvalues of $P$ are positive. Hence, deduce that the matrix

$$
P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 3
\end{array}\right) \text { is positive definite. }
$$

b) Let $U$ be an orthogonal operator on $\mathbb{R}^{3}$. Pick the correct statement(s) from the options given below.
(i) If $v=(1,1,1)$, then the length of the vector $U v$ (iii) If $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthonormal basis of $\mathbb{R}^{3}$, then is $\sqrt{3}$. $\quad$ so is $\left\{U v_{1}, U v_{2}, U v_{3}\right\}$.
(ii) If $v=(1,1,1)$, then the length of the vector $U v$ (iv) 1 or -1 has to be an eigenvalue of $U$.
[2m] is $\frac{1}{\sqrt{3}}$.
10. a) If $A=\left(\begin{array}{rr}1 & -1 \\ -2 & 2 \\ 2 & -2\end{array}\right)$, find the singular values of $A$. If $A=U \Sigma V^{t}$ is a singular value decomposition of $A$, then write the matrix $\Sigma$ corresponding to this $A$.
b) Let $V$ be a finite dimensional vector space over a field $K$. Define a bilinear form on $V$. If $V=K^{n}$ and $A \in M_{n}(K)$, show that the function $f: K^{n} \times K^{n} \rightarrow K$ defined by $f(u, v)=u^{t} A v$, for every $u, v \in K^{n}$ (where the elements of $K^{n}$ are seen as column matrices of order $n \times 1$ ), is a bilinear form on $K^{n}$. [5m]
c) Pick the correct statement(s) from the options given below.
(i) If $U$ is an orthogonal matrix, then all singular (iii) If $U$ is orthogonal and symmetric, then $U$ has to values $U$ are equal to each other. be $\pm I$, where $I$ is the $n \times n$ identity matrix.
(ii) If $U$ is an orthogonal matrix, then any pair of (iv) If $U$ is orthogonal and positive definite, then $U$ distinct rows of $U$ is linearly independent. has to be $I$.

