ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 M.Sc MATHEMATICS- I SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2021
 (Examination conducted in January-March 2022)
 MT 7421: Ordinary Differential Equations

Duration: 2.5 Hours
Max. Marks:70

1. The paper contains TWO printed pages.
2. Answer any SEVEN FULL questions, where each question carries 10 marks.
3. Find the power series solution in powers of $(x-1)$ of the initial value problem $x^{2} y^{\prime \prime}+y^{\prime}+2 y=0$ given that $y(1)=1$ and $y^{\prime}(1)=2$.
4. Show that $x=0$ is the regular singular point and hence obtain the series solution of the given differential equation $2 x^{2} y^{\prime \prime}+x y^{\prime}-(x+1) y=0$.
[10 marks]
5. (a) Show that for every integer $n, J_{-n}(x)=(-1)^{n} J_{n}(x)$ where $J_{n}(x)$ is Bessel's function of first kind and of order n.
(b) Prove that $\frac{d}{d x}\left\{x^{n} J_{n}(x)\right\}=x^{n} J_{n-1}(x)$.
[3 marks]
6. Find the eigenvalue and the corresponding eigen function of $\frac{d}{d x}\left(x \frac{d y}{d x}\right)+\frac{\lambda}{x} y=0$ with $y(1)=0$ and $y^{\prime}\left(e^{2 \pi}\right)=0$.
[10 marks]
7. (a) Determine if the boundary operators are linearly dependent or not.
$U_{1}(u)=u_{1}-3 u_{3}+u_{4}$ and $U_{2}(u)=u_{1}+u_{3}-2 u_{4}$
[3 marks]
(b) Solve the system of differential equations

$$
\frac{d x_{1}}{d t}=-4 x_{1}-x_{2}+9 e^{-3 t} \text { and } \frac{d x_{2}}{d t}=x_{1}+x_{2}-5 e^{-3 t}
$$

6. (a) Define a Fundamental set.
(b) Show that $z=y_{1} \cdot y_{2}$ is a solution of $z^{\prime \prime \prime}+4 a(x) z^{\prime}+2 a^{\prime}(x) z=0$ if y_{1} and y_{2} are two solutions of $y^{\prime \prime}+a(x) y=0$. Also show that if $\left\{\phi_{1}, \phi_{2}\right\}$ forms a fundamental set of $y^{\prime \prime}+a(x) y=0$, then $\left\{\phi_{1}^{2}, \phi_{1} \phi_{2}, \phi_{2}^{2}\right\}$ forms a fundamental set of $z^{\prime \prime \prime}+4 a(x) z^{\prime}+2 a^{\prime}(x) z=0$.
7. (a) Write down the conditions for two polynomial operators to be equal?
(b) Show that for any two polynomial operators $\mathrm{P}(\mathrm{D})$ and $\mathrm{Q}(\mathrm{D})$,
i. $[P(D)+Q(D)] u=P(D) u+Q(D) u$
ii. $[P(D) Q(D)] u=P(D) u Q(D) u$
8. (a) From a chemical analysis it was determined that the residual amount of $\mathrm{C}-14$ present in the samples of a charcoal taken from a cave under study was 15% of the original amount. Given that the half life of C-14 is 5600 years and that the quantity of $\mathrm{C}-14$ in the sample satisfies the decay equation, then
a) Find the decay constant k
b) Find $\mathrm{Q}(\mathrm{t})$, the quantity of $\mathrm{C}-14$ at any time t if the initial amount is $Q(0)=Q_{o}$.
c) Find the age of the charcoal remains and hence the approximate age of the cave. [5 marks]
(b) Check if the equation $\left(3 x y^{3}+2 y\right) d x+2 x^{2} y^{2} d y$ is exact or not. If not, make it exact and find the solution.
9. (a) Find the solution of $\frac{d^{2} y}{d t^{2}}+4 y=0$
(b) Discuss the existence and uniqueness theorem for the initial valued problem $\frac{d y}{d x}=x+y$ with $y(0)=1$ and the domain $D:|x| \leq 1,|y-1| \leq 1$ and hence find the solution.
10. (a) Define the critical point for an autonomous system of differential equations. Find the critical points of $\frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}+\left(2 x-x^{2}-x^{3}\right)=0$
(b) Determine the type and stability of the critical point of $(0,0)$ of the non linear system of equation $\frac{d x}{d t}=8 x-y^{2}, \frac{d y}{d t}=-6 y+6 x^{2}$.
