Register Number:
DATE:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27

M.Sc. PHYSICS - I SEMESTER
SEMESTER EXAMINATION: OCTOBER 2021

(Examination conducted in January-March 2022)

PH 7120/7121 - CLASSICAL MECHANICS

Time-2 1/2 hrs.
Max Marks-70
This question paper has 2 printed pages and 2 parts

Part A

Answer any 5 questions

$(5 \times 10=50)$

1. For a single particle moving in one dimension
(a) starting from the definition of kinetic energy show that defining a potential $V(x)$ such that $F(x)=-\frac{d V}{d x}$ leads to conservation of total energy.
(b) From this, define conservative forces.
2. What are integrals of motion? How many independent integrals of motion will a system with n degrees of freedom have? Give and example of the determination of integrals of motion for a system.
3. For a particle moving in Central Force Potential (conservative): $V(|\overrightarrow{\boldsymbol{r}}|)$ show that there is conservation of total angular momentum.
4. Integration of the radial component of the Lagrange equation for a particle moving in a Central Force Potential gives us the conservation of total energy equation as: $E=\frac{1}{2} \mu\left(\dot{r}^{2}+\frac{\ell^{2}}{\mu^{2} r^{2}}\right)+V$ where, each of the terms have their usual meaning. Show that the component $\frac{\ell^{2}}{m^{2} r^{2}}$ arises from a conservative-like force.
5. Explain:
(a) What is Legendre Transformation?
(b) How does Legendre Transformation lead to obtaining the Hamiltonian from the Lagrangian?
6. From basic arguments of three blocks of mass connected by springs, obtain the Lagrangian Density for a continuous medium like a string.
7. For a system rotating about an axis directed in an arbitrary direction, obtain the transformation relation for the rate of change of a vector \vec{A} with respect to time from the rotating frame to that in the inertial frame - in other words, show that: $\left.\frac{d \overrightarrow{\boldsymbol{A}}}{d t}\right|_{\text {inertial }}=\left.\frac{d \overrightarrow{\boldsymbol{A}}}{d t}\right|_{\text {rot }}+\hat{\boldsymbol{\Omega}} \times \overrightarrow{\boldsymbol{A}}$.

Part B

Answer any 4 questions

$(4 \times 5=20)$
8. A bead of mass m is constrained to move on a vertical parabolic path:
(a) Write down the equation of constraint of the bead
(b) Express the potential energy of the bead in terms of the generalized coordinate.
[2+3]
9. A stone (of mass m) is set into motion in a vertical circle.
(a) Compute the Lagrangian of the system
(b) From the Lagrangian, work out its equation of motion.
10. Compute the optimal path that makes the following integral stationary: $\quad J=\int_{x_{1}}^{x_{2}}\left(y^{2}-\dot{y}^{2}\right) d x$ where $\quad x$ is a parameter that defines the path: $y=y(x)$ and $\dot{y}=\frac{d y}{d x}$.
11. The perihelion (closest point from Sun) of Mercury is $r_{\mathrm{p}}=46 \times 10^{6} \mathrm{~km}$ when it has a velocity of $v_{\mathrm{p}}=58.98 \mathrm{~km} \mathrm{~s}^{-1}$. What is the velocity of Mercury at its aphelion (farthest from the sun) which is at a distance of $r_{a}=69.82 \times 10^{6} \mathrm{~km}$?
12. A block of mass m is in vertical free fall. Write down its
(a) Hamiltonian
(b) Hamilton's equations of motion.
13. The D'Alembert solution for waves on a string is given by: $\quad y(x, t)=f(x-c t)+g(x+c t)$ where $f(x-c t)$ represents the forward moving mode and $g(x+c t)$ represents the negative moving mode.
(a) Obtain the solution for the special case of a semi-infinite string that is fixed at $x=0$.
(b) What is the physical interpretation of this solution?

