ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 M.Sc. PHYSICS - I SEMESTER

SEMESTER EXAMINATION: OCTOBER 2021
(Examination conducted in January-March 2022)

PH 7220/ 7221 - MATHEMATICAL PHYSICS

Time- $21 / 2 \mathrm{hrs}$
This question paper contains Two printed pages and Two parts

Part A

Answer any FIVE questions. Each question carries 10 marks
[$5 \times 10=50$]

1. Let C be the contour $z=3 e^{i \theta}, 0 \leq \theta \leq \pi$. Show that $\left|\int_{C} \frac{z^{1 / 2}}{\left(z^{2}+1\right)} d z\right| \leq 3 \sqrt{3} \pi / 8$. Assume that $\left|\int f(z) d z\right| \leq|f(z)| . L$ where L is the length of the contour.
[10]
2. (a). Find the residues of $f(z)=\left(z^{2}-2 z\right) /\left[(z+1)^{2}\left(z^{2}+4\right)\right]$
(b). Let C be the boundary of the square whose sides lie along the lines $\mathrm{x}= \pm 2, y= \pm 2$ where C is described in the positive sense. Evaluate: $(i) . \oint e^{-z} d z /(z-\pi i / 2)$ and (ii). $\oint \operatorname{Cos} z d z /\left[z\left(z^{2}+8\right)\right]$.
[5+5]
3. (a) Find the Fourier Transform of Exponential decay $\left(e^{-x / a}\right)$. Show that the power spectrum of it has a Lorentzian profile. What is the physical significance?
(b) Find the Fourier Transform of two delta functions spaced equally on either side of the origin.
4. A covariant tensor has components $x y, 2 y-z^{2}, x z$ in rectangular co-ordinates. Find its covariant components in spherical co-ordinates.
5. (a). Starting from the generating function for Bessel's Function $J_{n}(x)$, find the Jacobi series and hence show that,

$$
\text { (i). } \cos x=J_{0}-2 J_{2}+2 J_{4}-\cdots, \quad \text { (ii). } \sin x=2 J_{1}-2 J_{3}+2 J_{5}-\cdots
$$

(b). Using Rodrigue's Formula: $P(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$. Find the following Legendre polynomial and plot the functions.
(i). $P_{0}(x),(i i), P_{1}(x),(i i i) . P_{2}(x),(i v) . P_{3}(x)$.
6. (a). With a suitable example, explain the properties of $\mathrm{SU}(2)$ group.
(b). Derive an expression for the one-dimensional heat flow.
7. Using the method of separation of variables, obtain the solution of the wave equation for (i). $k=0$, (ii). $k>0$, $(i i i) . k<0$.

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{10}
\end{equation*}
$$

Part B

Answer any Four questions. Each question carries 5 marks

8. Prove that, $J_{-n}(x)=(-1)^{n} J_{n}(x)$ using Bessel Polynomials.
9. Express the function $H(x)=x^{4}+2 x^{3}+2 x^{2}-x-3$ in terms of Hermite Polynomial.

$$
\left[H_{0}(x)=1, H_{1}(x)=2 x, H_{2}(x)=4 x^{2}-2, H_{3}(x)=8 x^{3}-12 x, H_{4}(x)=16 x^{4}-48 x^{2}+12\right]
$$

10. State and prove convolution theorem.
11. Prove Parseval's identity.
12. Find the Fourier Series decomposition of a rectangular wave form having a width a. What do you understand by Gibb's phenomenon?
13. (a). Form a partial differential equation by eliminating arbitrary function:

$$
Z=f\left(x^{2}-y^{2}\right)
$$

(b). Solve the partial differential equation using Lagrange's method $(P p+Q q=R)$:

$$
y^{2} p-x y q=x(z-2 y)
$$

