

Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 B.Sc., MATHEMATICS - V SEMESTER SEMESTER EXAMINATION: OCTOBER 2021 (Examination conducted in January-March 2022) <u>MT 5118 - MATHEMATICS V</u>

Time- 2 1/2 hrs

Max Marks-70

 $(5 \times 2 = 10)$

 $(7 \times 6 = 42)$

[1+5]

This question paper contains two printed pages and three parts

I. <u>Answer any 5 questions</u>

- 1. Define nilpotent element in a ring. List any two nilpotents of the ring \mathbb{Z}_8 .
- 2. Define integral domain and field.
- 3. Show that $3\mathbb{Z}$ is an ideal of \mathbb{Z} .
- 4. Show that $4\mathbb{Z}$ is neither a prime ideal nor a maximal ideal of \mathbb{Z} .
- 5. Let *R* be a commutative ring of characteristic 2. Show that the function $f : R \to R$ defined by $f(a) = a^2, \forall a \in R$ is a ring homomorphism.
- 6. Find the value of a_0 in the Fourier series expansion of $f(x) = e^x$ in $(0,2\pi)$.
- 7. Define Beta and Gamma function.
- 8. Prove that $\Gamma(n) = \int_0^\infty 2e^{-x^2} x^{2n-1} dx$.

II. Answer any 7 questions

- 9. a. Define idmpotent element in a ring.
 - b. In a Boolean ring *R*, prove that
 - i. $a + a = 0, \forall a \in R$.
 - ii. $a + b = 0 \Rightarrow a = b, \forall a, b \in R$.
 - iii. $ab = ba, \forall a, b \in R$.
- 10. a. Define the center of a ring. Show that center of a ring R is a subring of R.
 - b. Show that the set $\left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in \mathbb{Z} \right\}$ is a subring of $M_2(\mathbb{Z})$. [4+2]
- 11. Define zero divisor in a commutative ring. Prove that a nonzero element $a \in \mathbb{Z}_n$ is either a unit or a zero divisor.
- 12. a. Define characteristic of a ring. What is the characteristic of $M_2(\mathbb{Z}_3)$.
 - b. Let *R* be a ring with unity 1. Prove that if 1 is of infinite order under addition, then characteristic of *R* is zero, and that if 1 is of order *n* under addition, then characteristic of *R* is *n*.

- 13. Define left ideal, right ideal and two-sided ideal in a ring. Show that the set $\left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mid a, b \in \mathbb{Z} \right\}$ is a left ideal but not a right ideal of $M_2(\mathbb{Z})$.
- 14. Define prime ideal. Let *R* be a commutative ring with unity and *A* be an ideal of *R*. Prove that $\frac{R}{A}$ is an integral domain if and only if *A* is a prime ideal.
- 15. a. Define maximal ideal. Show that $\{0\}$ is a prime ideal of \mathbb{Z} but not maximal.
 - b. Show that for n > 1, $n\mathbb{Z}$ is a prime ideal of \mathbb{Z} if and only if n is a prime number.

[3+3]

[2+4]

 $(3 \times 6 = 18)$

- 16. a. Define homomorphism and isomorphism of rings.
 - b. Show that the function $\varphi : \mathbb{C} \to \mathbb{C}$ defined by $\varphi(z) = \overline{z}, \forall z \in \mathbb{C}$ is a ring isomorphism.
- 17. Let *R* and *S* be rings and $\varphi: R \to S$ be an onto ring homomorphism. Prove the following:
 - i. If *R* is a ring with unity 1 and $S \neq 0$, then $\varphi(1)$ is the unity of *S*.
 - ii. If A is an ideal of R, show that $\varphi(A)$ is an ideal of S.

III. Answer any 3 questions

- 18. Find the half range sine series expansion for $f(x) = \begin{cases} x, & 0 \le x \le \frac{l}{2} \\ l-x, & \frac{l}{2} \le x \le l \end{cases}$.
- 19. Obtain the Fourier series expansion of $f(x) = x^2$ on $-\pi \le x \le \pi$ with period 2π .
- 20. Evaluate i) $\beta\left(\frac{5}{2}, \frac{7}{2}\right)$ ii) $\int_{0}^{\pi/2} \sin^{6}\theta \ d\theta$. [2+4]

21. Prove that i)
$$n\Gamma(n) = \int_0^\infty e^{(-x)^{1/n}} dx$$
 ii) $\Gamma(n) = \int_0^1 \left[\log\left(\frac{1}{x}\right) \right]^{n-1} dx.$ [3+3]

22. Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.