MT 5118 - MATHEMATICS V

This question paper contains two printed pages and three parts
I. Answer any 5 questions
($5 \times 2=10$)

1. Define nilpotent element in a ring. List any two nilpotents of the ring \mathbb{Z}_{8}.
2. Define integral domain and field.
3. Show that $3 \mathbb{Z}$ is an ideal of \mathbb{Z}.
4. Show that $4 \mathbb{Z}$ is neither a prime ideal nor a maximal ideal of \mathbb{Z}.
5. Let R be a commutative ring of characteristic 2 . Show that the function $f: R \rightarrow R$ defined by $f(a)=a^{2}, \forall a \in R$ is a ring homomorphism.
6. Find the value of a_{0} in the Fourier series expansion of $f(x)=e^{x}$ in $(0,2 \pi)$.
7. Define Beta and Gamma function.
8. Prove that $\Gamma(n)=\int_{0}^{\infty} 2 e^{-x^{2}} x^{2 n-1} d x$.

II. Answer any 7 questions

($7 \times 6=42$)
9. a. Define idmpotent element in a ring.
b. In a Boolean ring R, prove that
i. $a+a=0, \forall a \in R$.
ii. $a+b=0 \Rightarrow a=b, \forall a, b \in R$.
iii. $a b=b a, \forall a, b \in R$.
10. a. Define the center of a ring. Show that center of a ring R is a subring of R.
b. Show that the set $\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}$ is a subring of $M_{2}(\mathbb{Z})$.
11. Define zero divisor in a commutative ring. Prove that a nonzero element $a \in \mathbb{Z}_{n}$ is either a unit or a zero divisor.
12. a. Define characteristic of a ring. What is the characteristic of $M_{2}\left(\mathbb{Z}_{3}\right)$.
b. Let R be a ring with unity 1 . Prove that if 1 is of infinite order under addition, then characteristic of R is zero, and that if 1 is of order n under addition, then characteristic of R is n.
13. Define left ideal, right ideal and two-sided ideal in a ring. Show that the set $\left\{\left.\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}$ is a left ideal but not a right ideal of $M_{2}(\mathbb{Z})$.
14. Define prime ideal. Let R be a commutative ring with unity and A be an ideal of R. Prove that $\frac{R}{A}$ is an integral domain if and only if A is a prime ideal.
15. a. Define maximal ideal. Show that $\{0\}$ is a prime ideal of \mathbb{Z} but not maximal.
b. Show that for $n>1, n \mathbb{Z}$ is a prime ideal of \mathbb{Z} if and only if n is a prime number.
16. a. Define homomorphism and isomorphism of rings.
b. Show that the function $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ defined by $\varphi(z)=\bar{z}, \forall z \in \mathbb{C}$ is a ring isomorphism.
17. Let R and S be rings and $\varphi: R \rightarrow S$ be an onto ring homomorphism. Prove the following:
i. If R is a ring with unity 1 and $S \neq 0$, then $\varphi(1)$ is the unity of S.
ii. If A is an ideal of R, show that $\varphi(A)$ is an ideal of S.
III. Answer any 3 questions
18. Find the half range sine series expansion for $f(x)=\left\{\begin{array}{c}x, 0 \leq x \leq \frac{l}{2} \\ l-x, \frac{l}{2} \leq x \leq l\end{array}\right.$.
19. Obtain the Fourier series expansion of $f(x)=x^{2}$ on $-\pi \leq x \leq \pi$ with period 2π.
20. Evaluate i) $\beta\left(\frac{5}{2}, \frac{7}{2}\right) \quad$ ii) $\int_{0}^{\pi / 2} \sin ^{6} \theta d \theta$.
21. Prove that i) $n \Gamma(n)=\int_{0}^{\infty} e^{(-x)^{1 / n}} d x$
ii) $\Gamma(n)=\int_{0}^{1}\left[\log \left(\frac{1}{x}\right)\right]^{n-1} d x$.
22. Prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.

