MT5218 - MATHEMATICS VI

Time- $21 / 2 \mathrm{hrs}$
Max Marks-70
This question paper contains TWO printed pages and THREE parts

I. Answer any FIVE questions

1. Find the real and the imaginary part of $f(z)=\frac{1}{z}, z \neq 0$.
2. Show that $u=e^{x} \cos y+x y$ is harmonic.
3. Find the fixed points of the transformation $w=\frac{3 z-4}{z}$
4. Evaluate $\oint_{c} \frac{\sin \pi z}{z-\pi}, c:|z+2|=1$.
5. If \vec{a} is a constant vector, show that $\nabla(\vec{a} \cdot \vec{r})=\vec{a}$
6. Show that $\vec{F}=(z+\sin y) \hat{\imath}+(x \cos y-z) \hat{\jmath}+(x-y) \hat{k}$ is irrotational.
7. Show that $\overrightarrow{\mathrm{v}}=(x+3 y) \hat{\imath}+(y-3 z) \hat{\jmath}+(x-2 z) \hat{k}$ is solenoidal.
8. For any scalar field ϕ, show that $\nabla \times(\nabla \phi)=0$.

II. Answer any SEVEN questions

9. i. Evaluate $\lim _{z \rightarrow i} \frac{\left(z^{3}+i\right)}{1-z i}$
ii. Evaluate $\lim _{z \rightarrow e^{\frac{i \pi}{3}}} \frac{\left.z\left(z-e^{i \pi}\right)^{3}\right)}{z^{3}+1}$
10. Show that the transformation $w=\frac{1}{z}$, transforms a circle to a circle.
11. Find the bilinear transformation which maps $0,-i,-1$ on z plane on to $i, 1,0$ in w plane. Also find its fixed points.
12. Define harmonic function and show that the real and imaginary parts of an analytic function $f(z)$ are harmonic.
13. Find the analytic function when the real part is $\left(r+\frac{1}{r}\right) \cos \theta$.
14. Find the orthogonal trajectories of $e^{-x}(x \sin y-y \cos y)=c$.
15. State and prove Cauchy Integral Theorem.
16. Evaluate $\oint_{c} \frac{z d z}{\left(z^{2}+1\right)\left(z^{2}-9\right)}$, where c is the circle $|z|=2$.
17. Evaluate $\oint_{c} \frac{d z}{z(z-1)}$, where c is the circle $|z|=3$.

III. Answer any THREE questions

18. i. If $r=|\vec{r}|$ where $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$ then show that $\vec{a} \cdot\left[\nabla\left(\frac{1}{r}\right)\right]=-\frac{\vec{a} \cdot \vec{r}}{r^{3}}$
ii. Find the scalar field ϕ, such that $\nabla \phi=\left(2 x y^{3} z^{4}\right) \hat{\imath}+\left(3 x^{2} y^{2} z^{4}\right) \hat{\jmath}+\left(4 x^{2} y^{3} z^{3}\right) \hat{k}$.

[2+4]

19. Find the constants a and b such that the surfaces $a x^{2}-b y z=(a+2) x$ and $4 x^{2} y+z^{3}=4$ are orthogonal at the point $(1,-1,2)$
20. Prove that $\operatorname{div}(\operatorname{curl} \hat{F})=0$.
21. Prove that $\nabla^{2}\left(\frac{1}{r}\right)=0$.
22. Show that $\vec{F}=\left(2 x y^{2}+y z\right) \hat{\imath}+\left(2 x^{2} y+x z+2 y z^{2}\right) \hat{\jmath}+\left(2 y^{2} z+x y\right) \hat{k}$ is a conservative force field and find its scalar potential.
