ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 BCA (BIG DATA ANALYTICS) - III SEMESTER SEMESTER EXAMINATION- OCTOBER 2021
(Examination conducted in January-March 2022)
BCADA 3221 - NUMERICAL METHODS

Time- 2.5 HRS

Max Marks -70

This question paper contains FOUR printed pages and THREE parts

PART A

Answer ALL questions

$20 \times 1=20$

1. Which of the following is an iterative method?
a. Gauss Seidel
b. Gauss Jordan
c. Factorization
d. Gauss Elimination
2. If a function is real and continuous in the region from a to b and $f(a)$ and $f(b)$ have opposite signs then there is no real root between a and b .
a. True
b. False
3. Which of the following symbol is known as forward difference operator?
a. ϕ
b. ∇
c. Δ
d. E
4. In gauss forward difference formula, the value of ' p ' always lies between 1 and 0
a. True
b. False
5. Which formula can be used for Picard's successive approximation?
a. $\mathrm{Y}_{\mathrm{n}+1}=\mathrm{y}_{0}+\int_{x 0}^{x} f(x, y n) d x$
b. $y_{n}=y\left(x_{n}\right)=y_{n-1}+h f\left(x_{n-1}, y_{n-1}\right)$
c. $y_{n+1}=y\left(x_{n}\right)=y_{n-1}+h f\left(x_{n-1}, y_{n-1}\right)$
d. $\mathrm{Y}_{\mathrm{n}}=\mathrm{y}_{0}+\int_{x 0}^{x} f(x, y n) d x$
6. Newton's divided difference formula is used when the interval difference is not same for all sequence of values
a. True
b. False
7. For exact differential equation of the form $M d x+N d y=0$
a. $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
b. $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
c. $\frac{\partial M}{\partial y}+\frac{\partial N}{\partial x}=0$
d. $\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=0$
8. If we solve $x^{2}-2=0$ using Raphson method and the initial guess is $x_{0}=1.0$, subsequent estimate of x will be
a. 1.1414
b. 1.5
c. 2.0
d. None of the above
9. The integrating factor of $y \frac{d x}{d y}=-2 x+10 y^{3}$
a. y
b. $\mathrm{y}+1$
c. $y+3$
d. None of these
10. Solve the system of equations and comment on the nature of the solution using Gauss Elimination method

$$
\begin{gathered}
x+y+z=0 \\
-x-y+3 z=3 \\
-x-y-z=2
\end{gathered}
$$

a. Infinitely many Solutions
b. Finite solutions
c. No solution
d. Unique Solution
11. Given that $f(2)=6, f^{\prime}(2)=-\frac{1}{2}$ and $f^{\prime \prime}(2)=10$, what is the most accurate Taylor polynomial approximation of $f(2.2)$ that you can find
a. 5.9
b. 6.1
c. 6.2
d. 7
12. The aim of elimination steps in Gauss elimination method is to reduce the coefficient matrix to \qquad
a. diagonal
b. identity
c. lower triangular
d. upper triangular
13. Identify Simpson's $\frac{1}{3}$ rule
a. $\frac{h}{2} y_{0}+2\left(y_{1}+y_{2}+y_{3}+\ldots . . y_{n-1}\right)+y_{n}$
b. $\frac{h}{3} y_{0}+y_{n}+4\left(y_{1}+y_{3}+y_{5}+\ldots . . y_{n-1}\right)+2\left(y_{2}+y_{4}+y_{6}+\ldots . . y_{n-2}\right)$
c. $\frac{3 h}{8} y_{0}+y_{n}+2\left(y_{3}+y_{6}+\ldots . . y_{n-3}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+\ldots . . y_{n-2}\right)$
d. $\frac{3 h}{2} y_{0}+2\left(y_{1}+y_{2}+y_{3}+\ldots . . y_{n-1}\right)+y_{n}$
14. Bessel's central difference interpolation formula is used when the number of arguments are even and the interpolating point is near the middle of the table
a. True
b. False
15. What is the general solution of the differential equation $y d x-\left(x+2 y^{2}\right) d y=0$
a. $x=y^{2}+c y$
b. $x=2 c y^{2}$
c. $x=2 y^{2}+c y$
d. None of the above
16. The order of differential equation is always
a. Positive Integer
b. Negative Integer
c. Rational Number
d. Whole number
17. False position method is used to solve
a. Nonlinear equation
b. System of linear equations
c. Quadratic equations
d. Iterative methods
18. If $\frac{d y}{d x}=a x+b y+c / k x+\rho y+\lambda$, where $\frac{a}{k}=\frac{b}{\rho}$ then is reducible to
a. Homogeneous form
b. Variable separable form
c. Exact form
d. Non- exact form
19. To determine $y(0.1)$ using fourth order Runge-Kutta method we have $y(0)=2$ and $h=0.1$ for the given $d y / d x=y-x$, we then obtain $k 1=0.2, k 2=0.205$, $k 3=0.20525$ and $k 4=0.21053$. What would be the value of $y(0.2)$
a. 0.2052
b. 0.2105
c. 2.4214
d. 2.2105
20. Integrating factor of $d y=\left\{e^{x-y}\left(e^{x}-e^{y}\right)\right\} d x$
a. $e^{e^{x}}$
b. e
c. e^{x}
d. $e^{2 x}$

PART B

Answer ANY SIX questions

21. Solve three iterations of Newton's method to find the root of the equation $\cos x-x e^{x}=0$
22. Perform four iterations of a Regula-Falsi method to obtain the root of the equation: $f(x)=x^{3}-2 x-5=0$
23. Employ Bessel's formula to obtain y_{25} given $\mathrm{y}_{20}=24, \mathrm{y}_{24}=32, \mathrm{y}_{28}=35, \mathrm{y}_{32}=40$
24. Employ Picard 's method to obtain, correct to four places of decimals the solution of the differential equation

$$
\frac{d y}{d x}=x^{2}+y^{2} \text { for } x=0.4, \text { given that } y=0 \text { when } x=0 \text {. }
$$

25. Solve using variable separable method: $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$
26. Apply Gauss forward formula to find $f(30)$ given that $f(21)=8.4708$, $f(25)=7.8144, f(29)=7.1070, f(33)=6.3432$ and $f(37)=5.5154$
27. Solve the differential equation: $\frac{d y}{d x}-x \tan (y-x)=1$
28. Solve Picard's process of successive approximations $\frac{d y}{d x}=1+x y$ with $y(0)=0$ up to third approximation.

PART C

Answer ANY TWO questions
$2 \times 10=20$
29. a). Apply Euler's method to approximate the solution of the initial value problem and calculate $y(0.1)$ by using $h=0.02: \frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$.
b). Apply RK-Method, solve the initial value problem $\frac{d y}{d x}=y x^{3}-1.5 y$ From $x=0$ to 2 where $y(0)=1$ by using $h=1$.
30. Solve the following equation using LU decomposition method
$3 x+2 y+z=10$
$2 x+3 y+2 z=14$
$x+2 y+3 z=14$
31. Solve the Linear system $A x=B$ using Gauss Elimination with pivoting:

$$
\mathrm{A}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & -3 & 4 \\
3 & 4 & 5
\end{array}\right) \quad \mathrm{B}=\left(\begin{array}{c}
9 \\
13 \\
40
\end{array}\right)
$$

