

Date:

Registration number:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 BCA (BIG DATA ANALYTICS) - III SEMESTER SEMESTER EXAMINATION- OCTOBER 2021 (Examination conducted in January-March 2022) BCADA 3221 – NUMERICAL METHODS

Time- 2.5 HRS

Max Marks -70

This question paper contains FOUR printed pages and THREE parts

PART A

Answer ALL questions

20 X 1 =20

- 1. Which of the following is an iterative method?
 - a. Gauss Seidel
 - b. Gauss Jordan
 - c. Factorization
 - d. Gauss Elimination
- 2. If a function is real and continuous in the region from a to b and f(a) and f(b) have opposite signs then there is no real root between a and b.
 - a. True
 - b. False
- 3. Which of the following symbol is known as forward difference operator?
 - а. ф
 - b. ∇
 - c. Δ
 - d. E
- In gauss forward difference formula, the value of 'p' always lies between 1 and 0

 True
 - b. False
- 5. Which formula can be used for Picard's successive approximation?
 - a. $Y_{n+1} = y_0 + \int_{x_0}^x f(x, yn) dx$
 - b. $y_n = y(x_n) = y_{n-1} + hf(x_{n-1}, y_{n-1})$
 - C. $y_{n+1} = y(x_n) = y_{n-1} + hf(x_{n-1}, y_{n-1})$
 - d. $Y_n = y_0 + \int_{x_0}^{x} f(x, y_n) dx$
- 6. Newton's divided difference formula is used when the interval difference is not same for all sequence of values
 - a. True
 - b. False

7. For exact differential equation of the form Mdx + Ndy = 0

a.
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

b. $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$
c. $\frac{\partial M}{\partial y} + \frac{\partial N}{\partial x} = 0$
d. $\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = 0$

- 8. If we solve $x^2 2 = 0$ using Raphson method and the initial guess is $x_0 = 1.0$, subsequent estimate of x will be
 - a. 1.1414
 - b. 1.5
 - c. 2.0
 - d. None of the above
- 9. The integrating factor of $y \frac{dx}{dy} = -2x + 10y^3$

0

- a. y
- b. y+1
- c. y+3
- d. None of these
- 10. Solve the system of equations and comment on the nature of the solution using Gauss Elimination method

- a. Infinitely many Solutions
- b. Finite solutions
- c. No solution
- d. Unique Solution
- 11. Given that f(2) = 6, $f'(2) = -\frac{1}{2}$ and f''(2) = 10, what is the most accurate Taylor polynomial approximation of f(2.2) that you can find
 - a. 5.9
 - b. 6.1
 - c. 6.2
 - d. 7
- 12. The aim of elimination steps in Gauss elimination method is to reduce the coefficient matrix to _____
 - a. diagonal
 - b. identity
 - c. lower triangular
 - d. upper triangular

- 13. Identify Simpson's $\frac{1}{3}$ rule
 - a. $\frac{h}{2} y_0 + 2(y_1 + y_2 + y_3 + \dots + y_{n-1}) + y_n$ b. $\frac{h}{3} y_0 + y_n + 4(y_1 + y_3 + y_5 + \dots + y_{n-1}) + 2(y_2 + y_4 + y_6 + \dots + y_{n-2})$ c. $\frac{3h}{3} y_0 + y_n + 2(y_3 + y_6 + \dots + y_{n-3}) + 3(y_1 + y_2 + y_4 + y_5 + \dots + y_{n-2})$ d. $\frac{3h}{2} y_0 + 2(y_1 + y_2 + y_3 + \dots + y_{n-1}) + y_n$
- Bessel's central difference interpolation formula is used when the number of arguments are even and the interpolating point is near the middle of the table a. True
 - b. False
- 15. What is the general solution of the differential equation $ydx (x + 2y^2)dy = 0$
 - a. *x=y*²+cy
 - b. *x=2cy*²
 - c. *x=2y*²+cy
 - d. None of the above
- 16. The order of differential equation is always
 - a. Positive Integer
 - b. Negative Integer
 - c. Rational Number
 - d. Whole number
- 17. False position method is used to solve
 - a. Nonlinear equation
 - b. System of linear equations
 - c. Quadratic equations
 - d. Iterative methods
- 18. If $\frac{dy}{dx} = ax + by + c/kx + \rho y + \lambda$, where $\frac{a}{k} = \frac{b}{\rho}$ then is reducible to
 - a. Homogeneous form
 - b. Variable separable form
 - c. Exact form
 - d. Non- exact form
- 19. To determine y(0.1) using fourth order Runge-Kutta method we have y(0)=2 and h=0.1 for the given dy/dx= y-x, we then obtain k1=0.2, k2=0.205, k3=0.20525 and k4=0.21053. What would be the value of y(0.2)
 - a. 0.2052
 - b. 0.2105
 - c. 2.4214
 - d. 2.2105

- 20. Integrating factor of $dy = \{e^{x-y}(e^x e^y)\}dx$
 - a. e^{ex}
 - b. *e*
 - c. *e*^{*x*}
 - d. e^{2x}

PART B

Answer ANY SIX questions

6 X 5 = 30

- 21. Solve three iterations of Newton's method to find the root of the equation $cosx xe^x = 0$
- 22. Perform four iterations of a Regula-Falsi method to obtain the root of the equation: $f(x) = x^3 2x 5 = 0$
- 23. Employ Bessel's formula to obtain y_{25} given $y_{20}=24$, $y_{24}=32$, $y_{28}=35$, $y_{32}=40$
- 24. Employ Picard 's method to obtain, correct to four places of decimals the solution of the differential equation

 $\frac{dy}{dx} = x^2 + y^2$ for x = 0.4, given that y = 0 when x = 0.

- 25. Solve using variable separable method: $(e^y + 1) \cos x \, dx + e^y \sin x \, dy = 0$
- 26. Apply Gauss forward formula to *find f*(30) given that *f*(21)=8.4708, *f*(25)=7.8144,*f*(29)=7.1070, *f*(33)=6.3432 and *f*(37)=5.5154
- 27. Solve the differential equation: $\frac{dy}{dx} x \tan(y x) = 1$
- 28. Solve Picard's process of successive approximations $\frac{dy}{dx} = 1 + xy$ with y(0) = 0 up to third approximation.

PART C

Answer ANY TWO questions

2 X 10 = 20

- 29. a). Apply Euler's method to approximate the solution of the initial value problem and calculate *y* (0.1) by using *h*=0.02: $\frac{dy}{dx} = \frac{y-x}{y+x}$, *y* (0) =1.
 - b). Apply RK-Method, solve the initial value problem $\frac{dy}{dx} = yx^3 1.5y$ From *x*=0 to 2 where *y* (0) =1 by using *h*=1.
- 30. Solve the following equation using LU decomposition method 3x + 2y + z=10 2x + 3y + 2z = 14 x + 2y + 3z = 14
- 31. Solve the Linear system Ax=B using Gauss Elimination with pivoting:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -3 & 4 \\ 3 & 4 & 5 \end{bmatrix} \qquad B = \begin{bmatrix} 9 \\ 13 \\ 40 \end{bmatrix}$$