Register Number:
Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27
 B.Sc. MATHEMATICS - I SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2021
 (Examination conducted in January-March 2022) MT121: MATHEMATICS I

Duration: 3 Hours
Max Marks: 100
This question paper contains TWO printed pages and FIVE parts.
I. ANSWER ANY TEN OF THE FOLLOWING.

1. Find is the Rank of $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$
2. Find the Eigenvalues of $A=\left[\begin{array}{cc}3 & 4 \\ -2 & -3\end{array}\right]$
3. State Cayley Hamilton theorem.
4. If a function $f(x)$ is differentiable at $x=a$, then show that it is continuous at $x=a$.
5. Find the $n^{\text {th }}$ derivative of $\cos (a x+b)$.
6. If $y=x^{n} \log x$ then show that $x y_{n+1}=n$!.
7. State Rolle's theorem.
8. Show that $\frac{x}{1+x}<\log (1+x), \forall x \leq 0$.
9. Find $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.
10. If $u=\tan ^{-1}\left(\frac{y}{x}\right)$ then show that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$
11. If $x^{3}+y^{3}-3 a x y=0$ and find $\frac{d y}{d x}$ using partial differentiation.
12. If $u=\theta(1+\phi)$ and $v=\phi(1+\theta)$, show that $\frac{\partial(u, v)}{\partial(\theta, \phi)}=1+\theta+\phi$

II. ANSWER ANY FOUR OF THE FOLLOWING.

$(4 \times 5=20)$
13. Find the value of a in order that the rank of the matrix A is 3 , where $A=\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ a & 2 & 2 & 2 \\ 9 & 9 & a & 3\end{array}\right]$
14. Find the rank of the following matrix by reducing it to normal form. $A=\left[\begin{array}{cccc}0 & 2 & 4 & -4 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right]$
15. Find the non-trivial solution of the following system

$$
\begin{aligned}
& x+3 y-2 z=0 \\
& 2 x-y+4 z=0 \\
& x-11 y+14 z=0
\end{aligned}
$$

16. Examine the consistency and solve if consistent.
$x+2 y-5 z=-13$
$3 x-y+2 z=1$
$2 x-2 y+3 z=2$
$x-y+z=-1$
17. Find the eigen values and eigen vector of $A=\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]$
18. By using Cayley Hamilton theorem find the inverse of $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$

III. ANSWER ANY FOUR OF THE FOLLOWING.

$(4 \times 5=20)$
19. Show that a function which is continuous in a closed interval attains its bounds atleast once.
20. Discuss the differentiablilty of the function at $x=0$,
$f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}$
21. Find the $n^{\text {th }}$ derivative of
$(3+2 m)$
i. $e^{3 x} \sin ^{2} x$
ii. $\sinh x \cdot \sin 2 x$
22. Find the $n^{\text {th }}$ derivative of $\frac{4 x}{(x-1)^{2}(x+1)}$
23. If $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$, then show that $\left(1+x^{2}\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$.
24. If $y=e^{\tan ^{-1} x}$ show that $\left(1+x^{2}\right) y_{n+2}-[2(n+1) x-1] y_{n+1}+n(n+1) y_{n}=0$.

IV. ANSWER ANY FOUR OF THE FOLLOWING.

25. Verify Rolle's theorem for $f(x)=x^{3}-4 x$ on $[-2,2]$.
26. State and prove Lagrange's mean value theorem.
27. Verify cauchy mean value theroem for $f(x)=\sin x, g(x)=\cos x$ in $\left[0, \frac{\pi}{2}\right]$.
28. Obtain the expansion of $f(x)=\frac{e^{x}}{1+e^{x}}$ at $x=0$ upto x^{3}.
29. Expand $\sin x$ using Taylor's series at $x=\frac{\pi}{2}$
30. Evaluate $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$.

V. ANSWER ANY FOUR OF THE FOLLOWING.

31. If $u=f(r)$ where $r^{2}=x^{2}+y^{2}$ show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f^{\prime \prime}(x)+\frac{1}{r} f^{\prime}(r)$.
32. State and prove Euler's theorem for homogeneous functions.
33. If $u=\log \left(\frac{x^{3}+y^{3}}{x-y}\right)$ then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=2$
34. If $x=r \cos \theta$ and $y=r \sin \theta$. Find $J=\frac{\partial(x, y)}{\partial(r, \theta)}$ and $J^{\prime}=\frac{\partial(r, \theta)}{\partial(x, y)}$.
35. Expand $e^{x} \log (1+y)$ in Taylor's series(Maclaurin's form) around the origin.
36. Find the critical points of the function and classify them for maxima and minima $f(x, y)=x^{3}-3 x y+y^{3}$.
