Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 B.Sc. MATHEMATICS - I SEMESTER SEMESTER EXAMINATION: OCTOBER 2021 (Examination conducted in January-March 2022) MT121: MATHEMATICS I

Duration: 3 Hours

This question paper contains **TWO** printed pages and **FIVE** parts.

I. ANSWER ANY <u>TEN</u> OF THE FOLLOWING.

- 1. Find is the Rank of $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$
- 2. Find the Eigenvalues of $A = \begin{bmatrix} 3 & 4 \\ -2 & -3 \end{bmatrix}$
- 3. State Cayley Hamilton theorem.
- 4. If a function f(x) is differentiable at x = a, then show that it is continuous at x = a.
- 5. Find the n^{th} derivative of cos(ax + b).
- 6. If $y = x^n \log x$ then show that $xy_{n+1} = n!$.
- 7. State Rolle's theorem.
- 8. Show that $\frac{x}{1+x} < log(1+x), \forall x \leq 0.$
- 9. Find $\lim_{x \to 0} \frac{\sin x}{x}$.
- 10. If $u = \tan^{-1}(\frac{y}{x})$ then show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$
- 11. If $x^3 + y^3 3axy = 0$ and find $\frac{dy}{dx}$ using partial differentiation.
- 12. If $u = \theta(1 + \phi)$ and $v = \phi(1 + \theta)$, show that $\frac{\partial(u, v)}{\partial(\theta, \phi)} = 1 + \theta + \phi$

II. ANSWER ANY <u>FOUR</u> OF THE FOLLOWING.

- 13. Find the value of *a* in order that the rank of the matrix *A* is 3, where $A = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ a & 2 & 2 & 2 \\ 9 & 9 & a & 3 \end{bmatrix}$
- 14. Find the rank of the following matrix by reducing it to normal form. $A = \begin{bmatrix} 0 & 2 & 4 & -4 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$
- 15. Find the non-trivial solution of the following system x + 3y - 2z = 0 2x-y + 4z = 0x - 11y + 14z = 0

Max Marks: 100

(10×2=20)

(4×5=20)

16. Examine the consistency and solve if consistent.

 $\begin{array}{l} x+2y-5z=-13\\ 3x-y+2z=1\\ 2x-2y+3z=2\\ x-y+z=-1 \end{array}$

17. Find the eigen values and eigen vector of $A = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$

18. By using Cayley Hamilton theorem find the inverse of $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$

III. ANSWER ANY <u>FOUR</u> OF THE FOLLOWING.

 $(4{ imes}5{=}20)$

(3+2m)

 $(4 \times 5 = 20)$

 $(4 \times 5 = 20)$

- 19. Show that a function which is continuous in a closed interval attains its bounds atleast once.
- 20. Discuss the differentiablilty of the function at x = 0,

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{for } x \neq 0\\ 0 & \text{for } x = 0 \end{cases}$$

21. Find the n^{th} derivative of

i. $e^{3x}sin^2x$

ii. sinhx.sin2x

- 22. Find the n^{th} derivative of $\frac{4x}{(x-1)^2(x+1)}$
- 23. If $y = (x + \sqrt{1 + x^2})^m$, then show that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 m^2)y_n = 0$.

24. If $y = e^{tan^{-1}x}$ show that $(1+x^2)y_{n+2} - [2(n+1)x-1]y_{n+1} + n(n+1)y_n = 0$.

IV. ANSWER ANY <u>FOUR</u> OF THE FOLLOWING.

- 25. Verify Rolle's theorem for $f(x) = x^3 4x$ on [-2, 2].
- 26. State and prove Lagrange's mean value theorem.
- 27. Verify cauchy mean value theorem for f(x) = sinx, g(x) = cosx in $[0, \frac{\pi}{2}]$.
- 28. Obtain the expansion of $f(x) = \frac{e^x}{1+e^x}$ at x = 0 up to x^3 .
- 29. Expand sinx using Taylor's series at $x = \frac{\pi}{2}$
- 30. Evaluate $\lim_{x \to 0} (1+x)^{\frac{1}{x}}$.

V. ANSWER ANY <u>FOUR</u> OF THE FOLLOWING.

31. If u = f(r) where $r^2 = x^2 + y^2$ show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(x) + \frac{1}{r}f'(r)$.

32. State and prove Euler's theorem for homogeneous functions.

33. If
$$u = log(\frac{x^3 + y^3}{x - y})$$
 then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2$

- 34. If $x = r\cos\theta$ and $y = r\sin\theta$. Find $J = \frac{\partial(x,y)}{\partial(r,\theta)}$ and $J' = \frac{\partial(r,\theta)}{\partial(x,y)}$.
- 35. Expand $e^{x}log(1+y)$ in Taylor's series (Maclaurin's form) around the origin.
- 36. Find the critical points of the function and classify them for maxima and minima $f(x, y) = x^3 3xy + y^3$.